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ABSTRACT 

Overmarsh circulation is highly complex with variations in current direction over 

very short timescales and flowpaths that differ substantially between flood and ebb 

cycles. Understanding such flow complexities in salt marshes is important because they 

inherently impact the distribution of sediment, larvae and nutrients throughout the marsh, 

and hence, the ecogeomorphic feedbacks that control landscape evolution. The purpose 

this Ph.D. research is to quantitatively evaluate the effects of salt marsh topography on 

overmarsh circulation in a Georgia salt marsh.  

This dissertation is comprised of three parts. First, digital elevation models 

(DEMs) were compared to characterize how well airborne lidar (light detection and 

ranging) data depict the microtopography of a salt marsh. 72,000 GPS points and 700,000 

lidar points from a 1km
2
 salt marsh island were linearly interpolated using identical DEM 

configurations. 1D comparison between the two surfaces indicates that lidar is a robust 

tool for mapping intertidal landscapes. However, in a 2D or 3D sense, lidar DEMs do not 

adequately resolve the microtopographic variations of a salt marsh, and for research 

questions that require accurate depiction of small scale tidal creek networks and subtle 

terrain features lidar data should be augmented with other information. Therefore, in the 

second part of this work we apply a high resolution, high precision GPS DEM to 

numerical simulations in Delft3D to characterize complexity in overmarsh circulation 

over a 1.4km
2
 salt marsh basin. The model results provide a robust representation of field 

conditions and reveal that at times not necessarily linked to the transition between flood 
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and ebb, the current magnitude and direction were highly dynamic, with variations 

occurring on the order of tens of minutes. Model results show simultaneous flow 

divergence and convergence, concentrated flow, as well as large-scale rotational flow. 

Also, all spatial scales show strong differences between flood and ebb pathways, which 

gives rise to 53% transport of the dye export via overmarsh and intertidal creek flows, 

and 32% exiting through the central subtidal channel system; 15% remained in the 

system after five days. The complexity in overmarsh circulation arises from the 

submergence and emergence of salt marsh topography. In the final part of this work I 

systematically smooth the high resolution GPS DEM to answer the question: How much 

topographic detail is needed to accurately simulate overmarsh circulation? Topographic 

smoothing progressively reduced the basin drainage density by 97%, and in the course of 

averaging removed small scale intertidal creeks and creek networks. Nevertheless, 

simulation results show nominal effects up to a 50m x 50m grid smoothing whereupon a 

system-wide change from ebb to flood dominance occurs. Moreover, assessments of dye 

circulation reveal that tracer residence time appears to be set by the geomorphic structure 

of the basin. Overall, smoothing out small scale intertidal creeks and creek networks 

reveals their minor role in overmarsh circulation, while excessive smoothing caused the 

system to change from ebb to flood dominance.
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CHAPTER 1 

FOREWORD 

 Salt marshes remain the focus of intensive study due to their ecosystem functions 

and more recently in response to the unknown effects of sea level rise on their overall 

stability. In a sense, salt marshes act as coastal floodplains that store water and serve as 

depositional zones for marine and terrestrial sediments. Salt marshes are also highly 

productive with a net primary production that ranges from 650 to 3700g dry biomass m
-2

 

yr
-1

 (Teal, 1962; Williams and Murdock, 1966; Odum and de la Cruz, 1967) and are, 

therefore, an important nursery habitat for economically important fisheries (Cain and 

Dean, 1976; Weinstein, 1979; Wenner and Beatty, 1993; Lipcius et al., 2005). 

Furthermore, salt marshes help protect terrestrial lowlands from erosive tide and wave 

energy (Moller et al., 1999; Allen, 2000). All of the benefits of intertidal ecosystems are 

sustained by the interactions between physical and biological processes which operate 

within the context of an evolving salt marsh landscape. 

 When conducting field work in an inundated salt marsh one can observe 

suspended and floating material in transit, and this material can change speed and 

direction several times in a matter of minutes, and without the aid of wind. Here, I refer 

to the high temporal and spatial variability in overmarsh currents as “complexity”. 

Understanding the controls and scales of current complexity in salt marshes or tide 

influenced wetlands is important because in many cases it may strongly influence the
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distribution of suspended and dissolved nutrients (Valiela et al., 1978), larva distribution 

(Knieb, 1984), and contaminant dispersal (Nixon, 1980; Blanton et al., 2010).  

Field and numerical studies indicate that the primary controls on salt marsh 

circulation and associated material redistribution include vegetation drag (Leonard and 

Luther, 1995; Christansen et al., 2000; Leonard and Reed, 2002; Temmerman et al., 

2005) and topography (French and Stoddart, 1992; Lawrence et al., 2004; Torres and 

Styles, 2007; Chen and Torres, 2012). However, the detailed bathymetry or high 

resolution DEMs necessary for assessing the role of very subtle relief of salt marshes on 

overmarsh circulation typically are not present, and consequently the role of topography 

could not be fully evaluated. For example, Temmerman et al. (2005) used numerical 

simulations on a 0.05km
2
 salt marsh catchment to assess the interactions of topography, 

vegetation, and water level fluctuations on spatial variations in flow and sedimentation. 

Their flow domain was derived from a lidar DEM with 3m point spacing and a vertical 

accuracy of 0.13m. Hence, effects of depressions and creeks less than 3m wide were 

precluded. On the other hand, their model validation showed that the 3m DEM point 

spacing did not noticeably influence simulation results. In a related study of flow 

sensitivity to DEMs McKean et al. (2014) introduced random errors to a lidar DEM to 

assess the effects on 2D hydrodynamic simulations in a gravel bed stream, and they also 

found nominal effects.  

Cea and French (2012) investigated the sensitivity of hydrodynamic simulations 

to uncertainties in bathymetry and bed friction in subtidal, low intertidal, and high 

intertidal sub-regions of an estuary. In contrast to the studies above, they found a strong 

response in current velocity to bathymetry, whereas water level fluctuations were more 
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influenced by bed friction. Also, numerical simulations by Blanton et al. (2010) 

successfully replicated tidal driven flows through a salt marsh but their tracer results were 

not as robust due to tracer retention in the marsh interior. These results led the authors to 

speculate that salt marsh circulation is highly sensitive to small scale variations in 

topography, and in particular to the effect of smaller "capillary" creeks less than 1m in 

width and depth. Taken together, these studies highlight the important point that 

researchers have yet to characterize, the role of small scale topographic structure on salt 

marsh circulation. 

The goal of this dissertation is to investigate the interactions of topography and 

currents for a flooding and ebbing salt marsh. Here, I use field observation, remote 

sensing and numerical simulations in Delft3D to quantitatively answer the research 

question: How much topographic detail is needed to accurately simulate overmarsh 

circulation and dye transport? This work provides a deeper understanding of salt marsh 

morphodynamics and ecosystem stability. 

SCOPE OF THIS DISSERTATION 

There are three parts to this study; the first is related to developing a high 

resolution DEM (digital elevation model) of a salt marsh, and two are on simulations of 

overmarsh currents using the hydrodynamic model Delft3D. In the first part of this work, 

Chapter 2, a 1km2 salt marsh island near Georgetown, SC was surveyed with high 

precision RTK GPS and lidar (light detection and ranging). The DEMs were 

quantitatively compared to characterize well airborne lidar can depict the 

microtopography of the salt marsh. I discovered that 78% of lidar elevations were within 

+/- 0.25m of the high precision GPS elevations. However, spatial arrangement of 



www.manaraa.com

 

4 

elevation differences revealed that the lidar technology failed to resolve the overall 

structure of the salt marsh. Therefore, in a 1D sense lidar appears to be a robust tool for 

mapping intertidal landscapes because the majority of elevations were within the 

accepted range of accuracy. But  in a 2D and 3D sense, the technology does not capture 

the subtle geomorphic structure of the landscape. Therefore, for research questions that 

require accurate depiction of small-scale tidal creek networks and subtle terrain features 

GPS surveys are optimal, and lidar surveys should be augmented with other elevation 

information. 

In Chapter 3, I studied the complexity in salt marsh circulation using field 

observations, dye tracer and numerical simulations. The marsh bathymetry was created 

with RTK GPS surveys to map intertidal creeks greater than 1m wide. Model calibration 

and validation were quantified, and the model results provide a robust representation of 

field observations of pressure, velocity and dye concentration. Moreover, the spatial 

distribution of simulated dye mimics the distribution observed in aerial photographs 

following a dye tracer release. Next, I assessed flow at four spatial scales ranging from 

1m - 1,000m and highlight the spatial and temporal variability of processes that give rise 

to overmarsh circulation. At times that were not necessarily linked to the transition 

between flood and ebb, the current magnitude and direction were highly dynamic 

occuring on the order of tens of minutes. Model results show simultaneous flow 

divergence and convergence, and focused flow, as well as large scale rotational flow. 

Also, assessments of dye circulation reveal that 53% transport of the dye export via 

overmarsh and intertidal creek flows, and 32% exiting through the central subtidal 

channel system; 15% remained in the system after five days. Hence, water parcels 
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entering the system during flood do not necessarily exit by the same flowpath during ebb. 

Overall, I found that most of the modeled current complexity appears to be set by 

submergence and emergence of salt marsh topography.  

In Chapter 4, I progressively smooth the high precision GPS DEM to reduce 

topographic resolution. The series of smoothed DEMs is used in hydrodynamic 

simulations to quantify the effect of bathymetric smoothing on dye transport, and 

overmarsh flow. The primary goal of this work is to address a fundamental question in 

numerical simulations of natural landscapes: How much topographic detail is needed to 

accurately simulate flow processes? In addressing this question I am able to develop 

deeper insight into the role of intertidal creeks in overmarsh circulation. In this part of the 

study I use iterative comparisons between simulations resulting from initial and smoothed 

DEMs and quantify changes in dye transport and residence time, free surface elevation, 

velocity, flux and local currents.
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CHAPTER 2 

A COMPARISON OF GPS AND LIDAR
1
 SALT MARSH DEMS

1
 

                                                           
1
 Jessica Chassereau, Joseph Bell and Raymond Torres, 2011, A Comparison of GPS and 

Lidar Salt Marsh DEMs. Earth Surface Processes and Landforms, 13(36), 1300-1400. 

 Reprinted here with permission of publisher. 
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2.1 ABSTRACT 

Digital elevation models (DEMs) were compared to characterize how well 

airborne lidar (light detection and ranging) data depict the microtopography of a salt 

marsh. 72,000 GPS points and 700,000 lidar points from a 1km
2
 salt marsh island were 

linearly interpolated using identical DEM configurations. Overall, 78% of lidar elevations 

were within ±0.15m of the high precision GPS elevations. Spatial arrangement of 

difference values reveal that lidar performed best on the marsh platform, and poorly 

along tidal creeks and creek heads. Also, the overall shape of the salt marsh was poorly 

defined, even where lidar data were within the reported range of accuracy. These 

observations indicate that lidar appears to be a robust tool for mapping intertidal 

landscapes. However, lidar DEMs may not adequately resolve the microtopographic 

variations of a salt marsh, and for research questions that require accurate depiction of 

small scale tidal creek networks and subtle terrain features lidar data should be 

augmented with other information. 

2.2 INTRODUCTION  

The horizontal and vertical accuracy of airborne lidar data are variable, 

principally dependent on the technical specifications of the sensor and peripherals, on 

mission specifics and terrain attributes (Kraus and Pfiefer, 1998; Baltsavias, 1999; 

Hodgson and Bresnahan, 2004). Nevertheless, most lidar service providers deliver data 

with vertical accuracies of about ±0.15m when compared to surveyed ground points 

(Baltsavias, 1999), and with a comparable root mean square error (rms) for bare earth 

returns (Hodgson and Bresnahan, 2004). Filtering can potentially improve the overall 

accuracy where surface and terrain features are considered less optimal due to dense
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vegetation canopy and steep slopes. For example, Kraus and Pfiefer (1998) used an 

iterative algorithm based on linear prediction of ground returns to remove vegetation 

effects in woodlands. The raw lidar dataset had an accuracy of ±0.25m but their filter 

yielded a bare-earth model with an accuracy of ±0.10m. Vosselman (2000) implemented 

a slope-based filter, and Sithole and Vosselman (2004) concluded that filtering 

algorithms work best in gently sloping terrain with small buildings and sparse vegetation. 

Photogrammetric processing techniques are also used to improve the accuracy of lidar by 

supplementing the detection of break lines and stream edges (Lane, 2000; Carter et al., 

2001; Hicks et al., 2002; James et al., 2006). 

These studies indicate that lidar may be appropriate for applications in low lying 

coastal marshes and wetlands. For example, Montane and Torres (2006) directly 

compared a random sampling of lidar points to high precision GPS points and determined 

a vertical lidar over estimation of 0.07m for the vegetated marsh platform, with taller 

vegetation along creek banks giving rise to greater error. Moreover, several studies report 

<0.05m vertical accuracy for the salt marsh platform based on results from moving-

window smoothing (Yang, 2005; Wang et al., 2009). However, such filtering diminishes 

the microtopographic structure of salt marshes (Lohani and Mason, 2001) that has been 

shown to exert strong local control on over marsh currents (Torres and Styles, 2007; 

Blanton et al., 2010). Nevertheless, lidar DEMs have been an important component to 

studies in salt marsh circulation and morphodynamics (Temmerman et al., 2005; 

Fagherazzi et al., 2006). 

The purpose of this study is to evaluate how well a salt marsh lidar DEM can 

replicate a high accuracy, high precision GPS surface. In this sense, we propose to 
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conduct a 3D assessment of lidar technology for the microtopography of a salt marsh 

island based on a 72,000 GPS point DEM. Here we adopt a holistic approach by 

comparing DEMs from an entire salt marsh island. The island is taken as a geomorphic 

unit of landscape defined by subtidal channels and with a range of landscape attributes 

including intertidal creeks, depressions, platforms, levees and variable vegetation cover 

(Novakowski et al., 2004). Effects of the nominal 0.15m accuracy often quoted by lidar 

service providers, and the validation approaches taken to improve vertical lidar 

“accuracy” need further scrutiny, especially with salt marsh applications. This is 

especially important given the effects of microtopography on overmarsh circulation 

(Blanton et al., 2010) where the total platform relief may be a few decimeters and the 

elevation uncertainty may or may not adequately depict the 3D structure. 

2.3 STUDY SITE  

The study was conducted on Maddieanna Island, a small salt marsh island in the 

North Inlet-Winyah Bay estuary, near Georgetown, SC (Figure 2.1a). The estuary is a 

relatively pristine mesotidal, ebb dominated lagoonal estuary that drains 32km
2
 of 

intricately networked salt marsh tidal creeks and channels. Tides are semi-diurnal with a 

mean range of 1.50m (NOAA tide gauge #8662299). The island is located at the western 

edge of the estuary; approximately 1.5km from the terrestrial boundary. The island is 

1.05km
2
 of uninhabited salt marsh dissected by 24 tidal creeks varying in size and cross-

sectional geometry (Bell, 2009). The island is bound to the north by a major subtidal 

channel and to the south by channels fed by Winyah Bay (Figure 2a). 

The island is predominantly flat with most relief associated with channel 

networks. Unvegetated channels range from 
-
1.36-0.00m (all elevations referenced to 
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NAVD88); the marsh platform occurs between 0.00-0.32m, with levees and upland 

marsh from 0.32-0.78m giving 63% platform, 29% levee, 6% creek and 2% for surface 

depressions (Bell, 2009). The 0.0m elevation approximately corresponds to the transition 

between vegetated and unvegetated salt marsh. The vegetated marsh surface forms a 

monoculture of S. alterniflora from mid tide or higher (Morris et al., 2005). Short S. 

alterniflora grows on the platform and levees with stem heights of 0.15- 0.55m; tall 

spartina occupies the lower marsh and creek banks with stem heights up to 1.70m (Bell, 

2009). 

2.4 METHODOLOGY 

The 72,000 GPS points were collected on foot from 2000-2002 using real time 

kinematic total stations with Trimble 5700 dual frequency receivers. The data have ~5m 

spacing on the marsh platform, 0.5-2.0m spacing along levees, and 0.25-0.50m spacing 

along creek banks; this higher density was needed to characterize the channel edge 

(Figure 2.1b). Horizontal and vertical measurements were referenced to the NAD1983 

(2001) and NAVD88, respectively. GPS observations and difficult field conditions 

provided a practical accuracy of 0.04m vertical and 0.04m horizontal, and were used in 

calibrating the lidar mission and validating lidar elevations (Tamura et al., 2002; 

Hodgson and Bresnahan, 2004). 

The lidar mission was flown by the National Oceanic and Atmospheric 

Administration (NOAA) on August 25, 2003. The mission began at 12:35 pm during a 

falling tide. An Optech 1233 ALTM lidar system was onboard a Cessna Citation at an 

altitude of 1,219m at 160 knots, yielding a post spacing of 1.40m. Following Sheng 

(2008) we estimated an at nadir laser footprint of 0.24m. There were six flight strips 
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flown in a north-south direction with the three inner strips covering the island. 

Approximately 700,000 lidar points from the inner flight strips were used for this study. 

The lidar elevations were delivered as ellipsoid heights, and orthometric heights were 

calculated. First and last returns were not labeled as ground or vegetation. To reduce 

vegetation effects while avoiding smoothing of the data the lidar points were filtered such 

that all last returns having a separation of 0.15m or more from the first return were kept 

for the study. The lidar data were imported into ArcGIS and combined into a single point 

shapefile. 

Since the 72,000 GPS points were collected at variable point densities, the dataset 

is spatially biased with 57% of observations falling below 0.0m, or on 6% of the island 

area. To facilitate an unbiased comparison, the GPS and lidar data were linearly 

interpolated using a 0.25x0.25m grid with 8.1x10
6
 nodes. The grid spacing corresponds 

to the finest spacing in the GPS data along creek edges. The GPS elevations were taken 

to be "true ground", and the signed error was computed for each location (Equation 2.1 

after Hodgson and Bresnahan, 2004; Wang et al., 2009). 

SE = (lidarz – GPSz) = 
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 (2.1) 

DEMs based on the gridded elevations were created using geoprocessing tools. In 

order to minimize interpolation artifacts at the island perimeter we removed the outer 

most 5 pixels of both DEMs resulting in a net omission of 3.4% of gridded points. A 

surface map showing the spatial arrangement of SE was then generated using spatial 

analyst tools. 
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2.5 RESULTS  

The histogram of interpolated GPS elevations is unimodal and ranges from 
-
1.36m-0.78m 

(Figure 2.2a). The mean elevation is 0.21m and the mode is 0.25m, indicating a negative 

skew. The curve centers on the mode with the majority of elevations falling between 

0.0m-0.60m. The median elevation is 0.21m. The standard deviation of the distribution is 

0.18m. Figure 2a also shows the distribution of interpolated lidar elevations which range 

from 
-
1.21m- 2.06m. The mean elevation is 0.24m and the mode is 0.26m. The mean 

value is less than the mode indicating that the curve has a negative skew. The curve 

centers on the mode with the majority of elevations falling between 0.0m-0.70m. The 

median elevation is 0.21m. The standard deviation of the distribution is 0.27m. 

Overall, the distributions and shapes of the two histograms are similar (Figure 

2.2a). Both curves have negative skews. Each has a single peak, and similar modes; 

differing only by 0.01m. The median of both datasets are identical, but the comparison 

also shows some differences. For example, the GPS data extends 0.15m lower than the 

minimum lidar elevation. Also, the maximum lidar value is 1.28m higher than maximum 

GPS value. The mean of the lidar dataset is 0.04m greater than the mean GPS elevation. 

The standard deviation of the lidar dataset is 0.09m greater than that of the GPS 

distribution. Furthermore, a parametric test for equality between GPS and lidar means 

reveals a significant difference at a very high confidence interval (alpha = 0.005); 

indicating that the two datasets are statistically significantly different. 

Taking the difference between interpolated elevations resulted in SE values 

ranging from 
-
1.38-2.40m (Figure 2.2b). Although the range in SE is quite large, the 

mean SE value is only 0.05m with a standard deviation of ±0.28m. The median value is 
-
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0.03m with a mode of 
-
0.13m. Furthermore, the majority of SE values (78%) are within 

the accepted accuracy range of ± 0.15m. 11% of error values fall between 0.15m-0.55m. 

Error values ranging from 0.55m-2.40m comprise 4.9% of the dataset. Values falling 

between 
-
0.15m-

-
0.55m represent 6%. A small percentage of error (0.1%) is associated 

with elevation differences that yield negative values ranging from 
-
1.20m-

-
0.55m. These 

results indicate that in a 1D sense lidar may be appropriate for measuring salt marsh 

topography.  

Figure 2.3a shows the salt marsh DEM constructed using the interpolated GPS 

points. The DEM uses a classified color ramp with a 0.2m interval to show the elevation 

break points that are associated with salt marsh features. The GPS DEM reveals a well-

defined trough structure in the center of the island which indicates hydraulic connectivity 

between the creek networks. Also, there is a distinct slope in the marsh platform between 

the large continuous levee along the eastern border of the island to the low marsh in the 

west; the “source area” of tidal creek networks. Also, the intertidal creeks and channel 

networks are well-defined. For example, the one creek to the east shows a clear network 

structure, connection to the lower marsh, and a possible connection to the creeks along 

the western portion of the island. Small scale features are also noticeable; such as surface 

depressions at creek heads and smaller discontinuous levees along most intertidal creeks. 

Figure 2.3b shows the salt marsh DEM created with the interpolated lidar points. 

The lidar DEM has a subtle east to west transition in elevation but a strong south to north 

transition from higher to lower elevations. The overall shape and general pattern of creek 

networks are detected along the central and northern portions of the island. Creek 

structures become less resolved with distance from the mouth, and they show apparently 
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spurious rises in the creek beds. The DEM indicates that creek structures become less 

frequent to the south and the southern creeks are surrounded by unusually high levees.  

Several marsh depressions appear near creek heads, while others are not as clear and do 

show an apparent association to creek structures.  

Comparing figures 2.3a and 2.3b indicates that lidar data does not have a 

comparably defined GPS surface. For instance, the slopes and general bowl structure in 

the GPS data are poorly replicated in the lidar data. Also, the elevations along the eastern 

side of the island are slightly lower than the platform and there is no clear pattern in 

topographic relief. In the GPS DEM lower elevations relate to surface depressions and 

creeks while higher elevations relate to the marsh platform and levees. In the lidar DEM, 

low and high elevations do not seem to relate to the intuitively correspondent 

morphology. Moreover, the basin or trough structure of the island interior is not clearly 

detected with lidar. The lidar DEM has 4% more surface depression, 10% less marsh 

platform and 6% more levee area relative to the GPS data. Also, the lidar DEM does not 

adequately replicate 1
st
 order tributaries ≤1m in width and ≤ 0.15m deep, indicating that 

lidar data may not provide adequate representation of existing hydraulic connectivity for 

overmarsh circulation. Furthermore, the lidar DEM shows the branching of the main 

creeks being distorted by levees and high marsh. For example, it shows the tributary to 

the east being cut off at its bend by levees. This is also the case for most of the creeks to 

the west, where the meanders are blocked by levees, thus creating discontinuities in the 

creek structures. The surface depressions seen in figure 2.3a are replaced by exaggerated 

levees in figure 2.3b. 
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Figure 2.3c shows the spatial arrangement of SE. Areas of the study site where 

lidar accuracy is within the accepted range are typically associated with the marsh 

platform. Overall, SE values between 0.15-0.55m are found along the creek banks and in 

shallow depressions at the heads of first order creeks. SE values greater than 0.55m are 

limited to the southern part of the island, near creek mouths and in the marsh interior of 

the southwest. Most negative SE values occur near the outer edge of the northern part of 

the island, with the largest values along creek banks. 

In summary, the structures shown in the salt marsh DEMs markedly differ. In 

fact, the southern one third of the island looks like a completely different landscape in the 

lidar DEM. The GPS DEM more clearly highlights the intertidal creeks, features which 

are most obvious in the field. Additionally, the GPS DEM displays the subtle spatial 

structure shown as sloping terrain, depressions at channel heads, and extension of tidal 

creek networks; topographic features that are likely to go unnoticed in the field. The lidar 

DEM does not replicate this fine scale topographic structure. In fact, the marsh 

topography is unclear, even in areas where lidar data were within the range of accepted 

accuracy. The findings are summarized in Table 2.1. 

2.6 DISCUSSION  

Overall, 78% of lidar elevations were within the accepted range of accuracy. In 

this sense, lidar is a robust and powerful tool for mapping elevations of intertidal 

landscapes. However, our observations indicate that the lidar DEM poorly resolves the 

topographic structure of the salt marsh. Hence, in a 1D sense, the lidar technology seems 

to perform well, but in a 3D sense, the technology appears incapable of resolving the fine 

scale topographic structure. 
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Poor lidar performance was most apparent along creeks and in low marsh areas 

(below 0.0m). As might be expected, these zones coincide with tall S. alterniflora, which 

forms a high canopy. Laser energy often fails to penetrate a dense vegetation canopy 

resulting in last returns that are well above the marsh surface (Jenson et al., 1998). Peak 

growing season at Maddieanna Island occurs during late summer and early fall and these 

lidar data were acquired in August of 2003. Thus, it is likely that mission timing, in part, 

contributed to many instances of last returns from the vegetation canopy rather than the 

ground surface. 

Researchers have demonstrated that a range of filtering algorithms and 

photogrammetric techniques can be used to remove the effects of vegetation from the 

data (e.g., Lane, 2000; James et al., 2006). For example, Wang et al. (2009) applied a 

moving window technique that quantified the optimum radius for identifying ground lidar 

returns over the salt marsh platform. The resulting DEM had a calibrated accuracy of 

0.06m, consistent with the error of Montane and Torres (2006). However, the Wang et al. 

(2009) filter was limited to the marsh platform since the smoothing effects would likely 

lead to the complete loss of narrow channel structures (Lohani and Mason, 2001). We 

used a simple filter which reduced the influence of vegetation without smoothing but did 

not eliminate all vegetation effects; thus contributing to the mean positive error value of 

our lidar dataset. The SE surface map (figure 3c) also showed negative error values 

which can be explained by the absorption of laser energy by water standing on the marsh 

surface and in creeks. It is likely that some water may have been in part of the creek 

networks and perhaps standing on the platform, even at low tide. 
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Lidar performance was optimal along the marsh platform and at higher elevations. 

The marsh platform (0.0m–0.32m) is vegetated, but the canopy is less dense and is 

occupied by the short form of S. alterniflora typically less than 0.50m high (Morris and 

Haskin, 1990). These conditions increase the likelihood that more laser energy will return 

elevations from the marsh surface. It is likely that the filtering techniques outlined by 

Wang et al. (2009) can be applied here to increase "accuracy" and help to resolve the 

subtle slope in the marsh platform, but at the expense of resolving 1
st
 order creeks. 

Photogrammetric techniques implemented by James et al., (2006) and Carter et al. (2001) 

had success in correcting DEMs and the techniques could be applied here to improve 

lidar representation of creek structures. Also, increasing the point density of lidar data 

could increase the likelihood of detecting small scale topographic features which are 

often missed when sampling at a coarser resolution (MacEcheran and Davidson, 1987; 

Carter et al., 2001).  

Overall, it seems that lidar DEMs without advanced processing do not adequately 

represent the fine scale structure of salt marsh landscapes. On the other hand, most of the 

lidar returns fall within the acceptable range of error for the technology, and therefore the 

viability of lidar for salt marsh research will depend primarily on the nature of the 

research question. Our results suggest that studies using a lidar DEM for spatial modeling 

of surface currents, sediment transport, or material cycling may yield different results 

relative to a higher precision flow domain or bathymetry. Thus, in cases where the 

research questions hinge on accurate representation of tidal creek structure and 

mircotopography we recommend augmenting lidar DEMs with data from other sources. 
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2.7 CONCLUSIONS  

Comparing the interpolated GPS and lidar elevations we show that 78% of lidar 

data are within ±0.15m of the high precision GPS elevations. 15.9% and 6.1% of lidar 

elevations are higher and lower than the GPS elevations, respectively. Arranging the 

elevation differences spatially shows that lidar performs best on the marsh platform, and 

poorly along creeks, at creek heads and in low marsh. Although these1D results suggest 

that lidar is a powerful tool for mapping salt marsh elevations, our analyses reveal that 

the data sets are statistically significantly different.  Moreover, in comparing lidar and 

GPS DEMs we show that lidar provides poor definition of the overall structure of the salt 

marsh island, even where elevations are within the accepted range of error. For example, 

the shape and extent of the marsh platforms are significantly different. Hence, for 

research questions that require the precise detection of small scale microtopographic 

features, typical of salt marsh landscapes, lidar DEMs should be supplemented with 

additional information. New remote sensing technologies that use microlasers, photon-

level detection, and precise timing capabilities for 2D and 3D imaging; such as RULLI 

and L-SNR lidar (Roggemann et al., 2008; Cossio et al., 2010) will help overcome 

apparent technological limitations with complex intertidal landscapes. 
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Table 2.1 Summary of results from the GPS and Lidar DEM comparison. The table 

includes main findings related to lidar performance and associated terrain features. 

SE 

Range    

% of Total 

SE Dataset 

Terrain Features 

Associated with SE 

Effect of SE on Surface 

Representation 

± 0.15m 78 % Marsh Platform, 

levees 

Overall structure is undefined; no 

apparent topographic slope; no 

connection between creeks 

0.15m – 

0.55m 

11 % Creek banks, creeks  Tributaries are unresolved and/or cut 

off by levees; exaggerated levees 

replace surface depressions 

>0.55m 4.9 % Creek heads, low 

marsh 

Complete misrepresentation of the 

southwestern portion of the island 

< 
-
0.15m 6.1 % Outer edges of 

island, marsh 

platform, creek 

banks 

Marsh platform is lower on average 

than seen in the GPS DEM. 
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Figure 2.1 The study site: Maddieanna Island, SC (a). The figure illustrates the 

distribution of RTK GPS points used as reference data for the lidar assessment (b). Points 

were collected at a higher density near and within the creek structures. 
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Figure 2.2 Histograms of GPS and lidar elevations (a). Values are based on regularly 

spaced grids created using triangulation with lenear interpolation. The figure represents 

the differences in interpolated elevations. Vertical dashed lines indicate breaks in slope 

associated with geomorphic classifications (b). There is a peak occurrence of SE between 

± 0.15m.
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Figure 2.3 DEMs of interpolated GPS and lidar elevations (a and b, respectively). Warm colors represent high elevations. Cool colors 

represent low elevations. The figure also shows a surface map of SE (c); where white represents the accepted accuracy range (± 

0.15m), shades of red represent SE values between 0.15m-0.55m, and shades of blue represent SE values between -0.15m - -0.55m. 

SE values greater than 0.55m and less than -0.55m are shaded green and orange, respectively. 
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CHAPTER 3 

COMPLEXITY IN OVERMARSH CIRCULATION FOR A SEMI-ENCLOSED BASIN 

3.1 ABSTRACT 

We characterize complexity in salt marsh circulation over a 2km
2
 basin using 

field observations, dye tracer and numerical simulations. The marsh bathymetry was 

created with high precision Global Positioning System surveys to map intertidal creeks 

greater than 1m wide. Model calibration and validation were quantified, and the model 

results provide a robust representation of field conditions in that model efficiency varied 

from 0.82 – 0.99 for pressure and velocity, and 0.36 – 0.83 for dye concentration. 

Moreover, the overall spatial distribution of simulated dye mimics the distribution 

observed in aerial photographs. We assessed flow at four spatial scales ranging from 1m 

– 1,000m, and highlight the temporal and spatial variability of processes that give rise to 

overmarsh circulation. At times not necessarily linked to the transition between flood and 

ebb, the current magnitude and direction were highly dynamic, with variations occurring 

on the order of tens of minutes. Model results show simultaneous flow divergence and 

convergence, concentrated flow, as well as large-scale rotational flow. Also, all spatial 

scales show strong differences between flood and ebb pathways, which gives rise to 53% 

transport of the dye export via overmarsh and intertidal creek flows, and 32% exiting 

through the central subtidal channel system; 15% remained in the system after five days.
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Most of the modeled current complexity appears to be set by submergence and 

emergence of salt marsh topography and geomorphic structure. 

3.2 INTRODUCTION 

While conducting fieldwork in a salt marsh one can observe suspended and floating 

material in transit, and that this material can change speed and direction several times in 

the course of a tidal inundation. Of course, shifting wind conditions can account for 

surface water flow complexity, but overmarsh currents can vary substantially without 

wind effects (Kjerve et al., 1991; French and Stoddart, 1992; Leonard, 1997; Allen, 2000; 

Lawrence et al., 2004). Understanding the controls and scales of current complexity in 

salt marshes or tide influenced wetlands is important because in many cases it strongly 

influences the distribution of suspended and dissolved nutrients (Valiela et al., 1978), 

larva distribution (Kneib, 1984), and contaminant dispersal (Nixon, 1980; Blanton et al., 

2010). 

Field and numerical studies indicate that the primary controls on salt marsh 

circulation and associated material redistribution include vegetation drag (Leonard and 

Luther, 1995; Christansen et al., 2000; Leonard and Reed, 2002; Temmerman et al., 

2005) and topography (French and Stoddart, 1992; Lawrence et al., 2004; Torres and 

Styles, 2007; Chen and Torres, 2012). However, the detailed bathymetry or high 

resolution DEMs necessary for assessing the role of very subtle relief of salt marshes on 

overmarsh circulation typically are not present, and consequently the role of topography 

could not be fully evaluated. For example, Temmerman et al. (2005) used numerical 

simulations on a 0.05km
2
 salt marsh catchment to assess the interactions of topography, 

vegetation, and water level fluctuations on spatial variations in flow and sedimentation. 
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Their flow domain was derived from a lidar DEM with 3m point spacing and a vertical 

accuracy of 0.13m. Hence, effects of depressions and creeks less than 3m wide were 

precluded. On the other hand, their model validation showed that the 3m DEM point 

spacing did not noticeably influence simulation results. In a related study of flow 

sensitivity to DEMs McKean et al. (2014) introduced random errors to a lidar DEM to 

assess the effects on 2D hydrodynamic simulations in a gravel bed stream, and they also 

found nominal effects.  

Cea and French (2012) investigated the sensitivity of hydrodynamic simulations 

to uncertainties in bathymetry and bed friction in subtidal, low intertidal, and high 

intertidal sub-regions of an estuary. In contrast to the studies above, they found a strong 

response in current velocity to bathymetry, whereas water level fluctuations were more 

influenced by bed friction. Also, numerical simulations by Blanton et al. (2010) 

successfully replicated tidal driven flows through a salt marsh but their tracer results were 

not as robust due to tracer retention in the marsh interior. These results led the authors to 

speculate that salt marsh circulation is highly sensitive to small scale variations in 

topography, and in particular to the effect of smaller "capillary" creeks or intertidal 

creeks less than about 1m in width and depth. Taken together, these studies highlight the 

important point that researchers have yet to characterize the role of small-scale 

topographic structure on salt marsh circulation. 

Here we define overmarsh flow complexity as changes in current direction and 

magnitude that occur over short time intervals, and we use field observations of dye 

tracer dispersal and subtidal channel currents, and numerical simulations to understand 

the temporal evolution of and controls on overmarsh circulation. In particular we 
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simulate salt marsh flood and ebb conditions over a high resolution and high precision 

salt marsh DEM to help unravel the role of topographic structure in spatial and temporal 

variations in salt marsh currents. Modeled pressure, velocity, and dye transport replicate 

field observations, and we use this information to evaluate complexity in overmarsh 

circulation at four spatial scales: the whole system or basin (1000m), macro (100m), 

meso (10m), and micro (1m) scales over a set of tidal cycles with the specific goal of 

providing a detailed account of basin inundation and drainage by assessing free surface 

elevation, tracer residence time, water balances and local currents. The assigned length 

increments of the four spatial scales are not necessarily meant to represent the length of 

individual flow assessments, but instead were taken to reflect the length scale of the 

underlying flow processes that we endeavored to highlight in this study. 

3.3 STUDY SITE 

The study site is a 2km
2
 relatively isolated, section of a larger salt marsh system at 

31.96°N, -81.02W°, ~20km south of Savannah, Georgia, USA (Figure 3.1). The local 

tidal regime is mixed, semi-diurnal and ebb dominant with a mean tidal range of 2.5m 

(Figure 3.2). The basin is semi-enclosed with forested land to the west and south where 

the forest-marsh edge is defined by a 1m - 3m bluff. The northern border of the study site 

is Groves Creek a sinuous, ~ 50m-wide subtidal channel that provides a connection 

between the salt marsh and the Wilmington River to the east (Figure 3.1).  

The neap and spring tidal prisms are 8.11x10
5
m

3
 and 1.76x10

6
m

3
, respectively, 

based on the DEM volume between high water and low water elevations. The basin 

flushing-time, the hypothetical time for the exchange of one full basin volume (Equation 

4 of Dyer, 1973) is 1.12 days and 0.52 days for neap and spring conditions, respectively. 
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These flushing-time estimates are similar to basins with comparable surface areas, 

volume, tidal range and tidal prism (e.g. Abdelrhman, 2005). 

The vegetation is a monoculture of the smooth cordgrass Spartina alterniflora (S. 

alterniflora) with spatial variations in density and height dependent on surface elevation 

(Kostka, 2002; Blanton et al., 2010). For instance, tall form S. alterniflora with stem 

heights that exceed 2m and a density of about 112stems/m
2
, grows on the high channel 

banks and levees. The short form, which typically occurs on the lower marsh platform, 

has an average stem height of 0.28m, and a stem density of about 446 stems/m
2
. The 

vegetation heights and stem densities are based on clippings taken during a related study. 

In order of higher to lower elevations the study area consists of 10% levee, 46% 

marsh platform, 13% low marsh, 19% intertidal creeks, and 12% subtidal channel. 

Levees may occur along the subtidal channel and intertidal creeks, and reach 0.75m - 

1.30m (NAVD88). The marsh platform is a broad expanse of vegetated, low-relief 

landscape that forms between 0.45m - 0.74m and has a mean of 0.61m. The low marsh is 

sparsely vegetated and forms at the heads of intertidal creeks and in some areas form a 

large depression between 0.21m - 0.44m along an area of marsh east of the terrestrial 

boundary (Figure 3.1). Hereafter we refer to this area as the “marsh interior”. 

Groves Creek is the main channel, and it is 3.8km along-channel from the furthest 

reach in the marsh interior to the mouth at the Wilmington River. From there it is 11km 

to the ocean. Groves Creek maximum depth is -4.50m at the mouth and declines to -

0.80m inland; the corresponding bank-to-bank widths are 60m and 10m, respectively 

(Figure 3.3). At the site of our dye injection line, 2.2km from the mouth, the width is 35m 

and maximum depth is 4.0m (Figure 3.3). At 0.9km upstream of the injection line Groves 
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Creek splits into three main branches, for convenience called West, Middle, and East, 

with lengths of 1,100m, 700m, and 500m, respectively (Figure 3.1).  

There are 88 intertidal creeks with mouth elevations ranging from -0.79m - 

+0.20m. The spacing between creek mouths is ~40m and maximum intertidal creek 

lengths vary from 10m - 500m. The creek widths range from <1m - 20m. Narrower 

creeks typically occur in the northern areas of the marsh, across levees. There is a 

complex network of creeks beginning after the fifth bend in Groves Creek that are 

connected at the heads by low marsh (Figure 3.3). This low-lying area provides a 

connection between the northern and southern marsh interior (Figure 3.3). A second 

complex network dissects an area of low marsh in the southeast, hereafter referred to as 

“dissected marsh” (Figure 3.1). The longest and deepest intertidal creeks in the basin are 

along the eastern marsh edge and they provide a direct connection between the marsh 

interior and the Wilmington River (Figure 3.1). 

The tidal range at Groves Creek varies from 1.54m and 3.20m between neap and 

spring tides based on tidal oscillations observed at Station 1 (Figure 3.2). This study took 

place over a five-day interval from October 31 - November 5, 2010 when the tidal range 

was 2.1m - 3.2m (Figure 3.2). Hereafter, we refer to these minimum and maximum 

amplitudes as "neap" and "spring", respectively. The maximum water elevation during 

the neap and spring cycles was 0.78m and 1.45m, respectively. Therefore, at neap high 

tide the depth of water over the marsh platform was about 0.33m. During the spring high 

tide the water depth over the marsh platform was about 1.0m and the entire basin was 

submerged.
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3.4 METHODS 

3.4.1 FIELD DATA 

Thirty-two kg of Rhodamine dye was released as a line source applied 80m south 

of, or “upstream” of Station 2 on November 1
st
, 2010 (Figure 3.3) at 15:55 GMT (all time 

reported hereafter are in GMT), approximately 1.5hrs after low tide. The duration of the 

dye application was 15 minutes over a single pass across the channel. The amount of dye 

used was computed to offset the effects of dilution from the tidal prism and preserve 

measureable dye concentrations in the marsh interior.  

We also used a range of instruments that were installed in the subtidal system. 

The array includes Nortek Aquadopp acoustic Doppler current profilers (ADCP), SBE16 

CTDs, ISCO automated dye samplers, and Wetlabs ECO FLRHSB Rhodamine 

fluorometers all deployed in various combinations at eight stations (Table 3.1). 

Automated dye information was augmented by manually collecting water samples from 

boats (grab samples). All submerged instruments sampled at 10-minute intervals, the 

ISCO sampling rate was hourly, and the grab-sampling rate varied from 1 – 5 minutes for 

2 hours with finer temporal resolution over the 1hr passage time of the plume advance. 

All station locations are shown in Figure 3.3 and distances from the line source to the 

station are reported as along-channel distances. Station 1 was near the channel mouth 

1,680m from the dye source. Station 2 had one bank on the forested bluff 80m north of 

the line source. Stations 3, 4, and 5 were in the East, Middle, and West subtidal branches, 

respectively. Station 6 was also in the West branch near the southern terrestrial boundary 

1,760m from the line source (Figure 3.3). Station 7 was in the low marsh interior 1,490m 

east of the line source and 100m north of the southern terrestrial boundary. Station 8 was 
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in the large intertidal creek along the eastern marsh edge 1,900m east of the dye source 

(Figure 3.3). Observed pressure and velocity from Stations 1-6 were used to calibrate the 

model described in the next section. The dye analyses and results described below 

include all available data (Table 3.1). In addition, a series of air photos taken during the 

experiment were used to qualitatively compare the simulated to observed dye 

distributions.  

Trimble R6 GPS receivers were used to collect high-resolution topography three 

ways, by surveying points individually, with a SonarMite echo sounder for intertidal 

creeks, and with a Simrad multibeam system for Groves Creek. The higher elevations 

were surveyed at low water, and the soundings for intertidal creeks were made from a 

small motorized craft at high water. The survey consisted of 241 individual missions over 

169 field days in 2010 and 2011 resulting in 1.6x10
5
 points with spacing ranging from 

0.25m – 5m. RTK corrections were received through a VRS (Virtual Reference Station) 

operated by eGPS Solutions, Inc. reporting 0.02m horizontal and 0.02m vertical 

accuracies when connected to the internet via cellular telephone. ArcGIS software was 

used to linearly interpolate the survey data onto a 1m DEM for use in hydrodynamic 

simulations with Delft3D (Figure 3.3).  

3.4.2 MODEL DESCRIPTION, SETTINGS AND CALIBRATION 

The Delft3D simulation package consists of integrated modules which interact to 

compute water currents, water quality, and particle transport for user specified 

bathymetry, roughness, horizontal eddy viscosity, and dispersion coefficients. The 

standard hydrodynamic module is Delft3D FLOW and it is essential for modeling flow 

phenomena where horizontal length scales are significantly larger than the vertical 
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(Lesser et al., 2000). Delft3D is well suited for this study and has been applied 

successfully to salt marsh research in several different locations (Temmerman et al., 

2005, Marciano et al., 2005, Bouma et al., 2007 and Fagherazzi et al., 2014). 

Computation of unsteady shallow-water flow is determined through the horizontal 

momentum equation, the continuity equations, and transport equations. Bed roughness 

and horizontal eddy viscosity are both user defined and typically follow from calibration. 

Delft3D FLOW uses a finite-difference approach to compute water level and depth 

averaged velocity at each node. The FLOW output is subsequently coupled to the PART 

module to simulate the advection and diffusion of particles. Delft3D PART accounts for 

the random spreading of particles through the horizontal dispersion coefficient HD 

defined by Equation 3.1 (Csanady, 1973)  

b

D atH =  (3.1) 

where t is the age of the particle, and a and b are coefficients that emerge from the model 

calibration. For 2D flows the user must also specify a roughness length parameter, 

typically through calibration, which is used to calculate the logarithmic velocity profile.  

The simulations were conducted on a grid with uniform 1m horizontal spacing 

giving 5x10
6
 computational nodes. The domain was closed to the west and south along 

the terrestrial border, and closed to the north along the outer bank of Groves Creek. The 

domain was open to flow along the eastern boundary defined by the water level time 

series from Station 1. The model assigns positive and negative values to flows in the 

direction of increasing or decreasing X or Y, respectively. In this study, the origin of the 

computational domain is to the left of the open flow boundary. Therefore, flood velocities 

are negative and ebb velocities are positive. The geographic orientation of the channel at 
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Station 5 introduces ambiguity into the direction of flood and ebb (Figure 3.3). Therefore, 

all velocities at Station 5 were multiplied by -1 to ensure that flood velocities in all cases 

were negative.  

The model was calibrated with pressure and velocity data. The horizontal eddy 

viscosity was set to 0.0005m
2
/s (Temmerman, et al., 2005) and bottom roughness was 

applied as a calibration variable by adjusting Manning’s n values for vegetated (> 0.20m) 

and unvegetated (≤ 0.20m) marsh, constrained by the range of n values for salt marshes 

(Table 3.2), and by comparing results to observations. The model efficiency (ME, after 

Nash and Sutcliffe, 1970) was calculated with the entire time series record to guide 

model validation and to determine optimal values for Manning’s n as described below.  
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OBS(t) is the observed value at time t, SIM(t) is the modeled value at time t, and MEAN is 

the mean of the full time series. ME values can range from -∞ to 1 with 0 indicating 

simulation results are no better than the mean, and 1 indicating perfect agreement 

between modeled and observed data. Negative values signify conditions where the mean 

is a better predictor than the model. The highest ME was obtained by applying a 

Manning’s n of 0.017 and 0.10 for unvegetated and vegetated marsh, respectively (Table 

3.2), similar to values determined by French (2003).  

The modeled dye tracer was distributed over 7x10
6
 particles, the maximum 

number of particles required to achieve the highest level of accuracy while maintaining 

computational stability. The accuracy of the tracer simulation was expressed as the 

smallest concentration that can be represented by a single particle in a computational cell. 
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In our case, the smallest detectable concentration was 4ppb. Horizontal dispersion 

parameters were set to a = 0.20m
2
/s and b = 0.02, and a roughness length of 0.001m 

followed from model calibration. A computational time step of 0.025 minutes was used 

to establish numerically stable simulations, and results were output at 10-minute 

intervals. Dye concentrations are computed by dividing the total mass of particles in each 

computational cell by the cell volume. 

3.4.3 MODEL VALIDATION 

Visual inspection of observed vs. simulated pressure, velocity and dye 

concentration time series from the various stations shows that the model was largely 

successful in replicating the amplitude and timing for inundation and drainage. In 

particular, the model is highly efficient in simulating the time series at five of six stations 

(Figure 3.4). The simulated and observed data nearly overlie one another in five of the six 

stations and give a ME = 0.99. Station 2 has the least correspondence but maintains a 

robust ME = 0.92. However, the maximum and minimum water levels for each tidal 

cycle at Station 5 are offset by 0.10m – 0.20m, but this systematic offset appears to be a 

related to uncertainty in instrument position. 

The ME assessment of velocity at a station was equally successful in most cases, 

with a range of 0.82 – 0.94 (Table 3.3), and the velocity asymmetry is well replicated 

(Figure 3.5). The peak flood and ebb velocities are also well represented for most 

stations, although Station 1 is underestimated by up to 0.20m/s at the higher stages 

(Figure 3.5). Moreover, peak flood velocities at Station 3 are consistently underestimated 

by 0.20m/s. Taken together the ME values indicate that the model is largely successful in 

its representation of stage and velocity at most stations.  
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Simulation results for the dye tracer at Stations 1, 2, 3, 3 grab, 5 grab, 6, 7 and 8 

are overall successful in that the ME values are in the range of 0.30 – 0.83 (Table 3.3). 

Stations 1 and 2 have comparably large ME values of 0.83 – 0.82 but in both instances 

the peak concentrations are offset by 17ppb and 30ppb, respectively (Figure 3.6). The 

model is least efficient at Stations 3, 5 grab and 8 with ME of 0.36, 0.35 and 0.30, 

respectively. In these cases the overall shapes of the modeled dye responses are well-

represented, but peak concentrations are offset by up to 140ppb and the timing of the 

modeled tracer is ~ 30 minutes earlier than observed. On the other hand, in all eight 

instances the offsets decrease with time (Figure 3.6), and more importantly all of the ME 

values are positive, indicating that the numerical simulations of dye movement are 

representative of field conditions, albeit at different levels. 

3.4.4 GROVES CREEK CIRCULATION 

We characterized overmarsh circulation with dye concentration data from 

measurements at eight stations throughout Groves Creek, and we investigated circulation 

over the entire Groves Creek basin by using the coupled FLOW-PART components of 

Delft3D to simulate the transport of a conservative tracer. The modeled dye distribution 

provided insight for determining the spatial scales of analysis needed to assess overmarsh 

circulation. We evaluated marsh circulation with maps of modeled free surface elevation, 

stage-velocity relationships, residence time, velocity, flux, and local currents at the fours 

scales of assessment.  

In particular, the basin scale (1,000m) was assumed to represent spatial patterns in 

bulk average flows of water and dye that entered and exited the salt marsh system. 

Circulation at this scale was described using three approaches. First the elevation of the 
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free surface during the spring tide was mapped over the entire marsh at 20-minute 

intervals beginning at 4hrs after low water and ending 4hrs after high water. Water 

elevation contour maps were generated in ArcGIS and the corresponding areas of 

inundation were calculated for each time interval.   

The second approach made use of the proximity of Station 1 to the mouth of 

Groves Creek. Here we assumed that the "upstream" processes that affect flow at the 

mouth are encapsulated in the overall shape of the velocity – stage relationship for the 

spring tide. In this case we plotted the field data together with the simulated data to 

highlight the upstream geomorphic/topographic controls on a typical entry point for water 

in systems such as this, and the overall ability of the simulations to represent direct 

measurements. 

The final measure relied on tracer residence time for the 5-day interval as 

calculated from concentrations at stations 1, 2, 3, 6, 7 and 8. Residence time helps 

characterize the time required for a parcel of water to hypothetically enter and exit the 

system, and it can help quantify spatial variations in transport processes (Monsen et al., 

2002). Assuming concentration of the tracer decreases exponentially with time and 

adopting equation 3.3 and 3.4 from Miller and McPherson (1991)  

kt

oeCtC
−

=)(  (3.3) 

                                                   
k

Rt
1

=            (3.4) 

where C(t) is the concentration at time t, Co is the initial concentration of the tracer, and k 

represents first order removal rate. Residence time (Rt) is simply the inverse of the 

removal rate.  
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Circulation was assessed at the macro scale to illustrate the spatial arrangement of 

velocity vectors computed over 60m x 60m grids. This grid size was selected through an 

iterative grid averaging process and we determined that it was the optimal grid size for 

the representation of macro scale flow processes. Thus, this grid size represents flows 

over and through the marsh interior that operate at scales on the order of about 100m. 

This scale was useful for shedding light on the internal circulation of the system during 

intermediate tidal stages as well as detecting and quantifying variations in flow paths 

between flood and ebb cycles. Vector maps of simulated depth averaged velocity were 

generated in Matlab to show circulation over a four-hour interval, two hours before and 

after the spring high tide.  

Meso scale circulation refers to processes operating at a length scale of 10m 

corresponding to the flows between intertidal creeks. The meso scale approach included a 

flow assessment and water balance with a series of six transects across different parts of 

the marsh (Figure 3.3). Transect 1 encloses the marsh interior but was separated into two 

parts to account for flows between two different subtidal systems, 1a between the marsh 

interior and Groves Creek, and 1b between the marsh interior and the Wilmington River 

(Figures 3.1 and 3.3). Together transects 1a and 1b illustrate fluxes toward and away 

from the salt marsh interior. Therefore, net fluxes computed as the difference between 

inflows and outflows across these transects will reveal any overall water imbalance for 

the marsh interior. Transects 1a and 1b are 500m long and each consists of ten 50m long 

sections (Figure 3.3). This was advantageous for establishing transect flexibility with 

respect to geomorphic structure. Also, four 50m long transects (2a, 2b, 2c, and 2d) were 
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positioned further into the basin (Figure 3.3) to determine flow characteristics within the 

marsh interior.  

For all transects the magnitude and direction of net flux were computed at 10-

minute intervals and total flood and ebb fluxes were summed over their respective 390-

minute intervals. The convention for describing flux direction across transects 1 and 2 is 

expressed as positive (+) for outflow or ebb and negative (-) for inflow or flood (Figure 

3.3). Thus, flood and ebb volumes that do not sum to zero indicate a preferential flow 

direction between flood and ebb cycles. Specifically, a + volume over transect 1 indicates 

net flow away from the marsh interior. Likewise, consistent + values for transect 2 

collectively indicate net counterclockwise flow.  

Finally, micro scale circulation represents flow at a 1m scale with particular 

attention to the spring tide because of the fuller salt marsh inundation. In this case flow 

was evaluated at two locations in two intertidal creeks with a series of ~90º bends or 

“dogleg” bends (Figure 3.3). The two locations were selected to show vectors associated 

with the east/west and north/south sections of the dogleg. Creek 1 is a first order creek 

with a bank elevation of about 0.47m (Figure 3.3). The creek bed elevations of the 

north/south and east/west reaches are -0.53m and -0.38m, respectively. Creek 2 is part of 

an intertidal system that dissects the southern marsh interior (Figure 3.3). The bed 

elevations of the north/south and east/west sections are -0.60m and -0.66m, respectively, 

and the bank elevation is about 0.40m. Information on the dynamics of in-channel current 

direction and magnitude at these sites is useful because it can shed light on when channel 

structure no longer controls depth averaged flows. For example, flows with a uniform 

direction over a dog-leg indicate that larger scale pressure gradients dictate current 
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directions and magnitude, and not the creek banks. In this way, the micro scale analysis 

highlights local vs. basin scale controls on current complexity.  

3.5 RESULTS 

3.5.1 DYE TRACER AT A STATION 

Figure 3.6 shows the time series of concentrations at Stations 1, 2, 3, 3 grab, 5 

grab, 6, 7 and 8 for both observed data and simulations. The field data show that the dye 

appears at Station 1 8hrs after release. This is consistent with the dye release “upstream” 

of Station 1, and on the rising tide; hence dye could not reach the station until ebb. The 

first peak is 45ppb and it coincides with low tide (Figure 3.6a). The peak duration is 20 

minutes and concentrations decline to zero at high tide. Subsequent peak concentrations 

also coincide with low tide and decay with time. For example, successive peaks are 

28ppb, 17ppb, 11ppb, 7ppb, and 4ppb, respectively, decreasing by ~ 40% with each cycle 

(Table 3.4). Also, the duration of the peaks progressively increases to 2hrs with the final 

tidal cycle.  

The dye reaches Station 2 at the end of the ebb cycle 7.5hrs after the release, and 

again, because the station is “downstream” of the dye release. Peak concentrations occur 

at low tide and the first is 103ppb (Figure 3.6b) and lasts for 1.5hrs before declining to 

about 0 ppb at high tide. Subsequent peak values decay with time going from 52ppb, 

30ppb, 18ppb, 11ppb, and 6ppb, again decreasing by ~ 40% with each cycle (Table 3.4). 

As with Station 1 the duration of the peaks increases with time and reaches a maximum 

of 4hrs.   

Station 3 is upstream of the dye release and in the direction of transport on the 

rising tide. The concentration time series is more complex relative to the response at 
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stations 1 and 2, in that it exhibits a persistent double peak that gradually diminishes over 

several tidal cycles (Figure 3.6c). The first peak occurs just after high tide on November 

2
nd

 is 130ppb and a second lower peak occurs on the rising tide. There is a local 

minimum that occurs between peaks at low tide and concentrations go to 0ppb at high 

tide. Peak concentrations decay with time going from 65ppb, 40ppb, 21ppb, 14ppb, and 

8ppb (Table 3.4). 

The observed time series at Station 3 grab reflects the 2.5-hour time interval over 

which grab samples were collected (Figure 3.6d and Appendix a). This station is also 

upstream of the dye release and initial concentrations reach the site about 1hr after the 

release. A peak concentration of 588ppb occurs just after low tide (Appendix a). 

Concentrations decline on the rising tide and go to zero 1.5hrs after the initial peak.   

Similarly, grab samples were collected at Station 5 grab and the time series 

reflects the 2.5hr-sampling interval (Figure 3.6e and Appendix b). Station 5 grab is 

located upstream of the dye release in the West branch of the subtidal system. The dye 

plume reaches the station about 1hr after release. The largest concentration of all stations 

occurs as a peak of 1038ppb just after low tide (Appendix b).  

Station 6 is upstream of the dye release and the response is much more complex 

and variable relative to the responses of other stations. The largest concentration for the 

time series occurs as an initial peak coinciding with the rising tide 3hrs after the dye 

release (Figure 3.6f), giving an average dye velocity of 0.16m/s. This peak goes from 

0ppb to 530ppb, with the return to 0ppb occurring just before peak tide. This is followed 

by a double peaked interval with successive peaks occurring at mid tide during one rise-

fall interval. Concentrations decline rapidly with time and the peak duration increases 
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from 4hrs to 8hrs (Figure 3.6f). Subsequent increases in concentration lack the double 

peak and give more of a plateau response, and successive plateau values decline at a rate 

of 35-40%. Another apparently consistent response in this dye time series is smaller and 

relatively short-lived peaks that occur just after high tide, or just before the 

concentrations reach the plateau values.  

Station 7 is located further into the marsh interior between the subtidal system and 

the eastern marsh edge. The initial peak of 170ppb occurs during the first ebb tide, about 

six hours after the dye release (Figure 3.6g). Station 7 is dry at mid to low tide and this 

resulted in gaps of the time series. Peaks occurring during the subsequent ebb tides 

decrease exponentially from 89ppb, 54ppb, 38ppb, 21ppb, 16ppb, and 8ppb (Table 3.4). 

The Station 8 data have a response similar to that of Station 1 and 2 in that they 

increase from zero to a consistently higher range over an interval of about four hours 

midway between the ebb and flood phase, and the peak values decline with each 

successive tidal cycle (Figure 3.6h). However, the data differ in that at the onset of the 

higher four-hour interval the concentrations attain an initial peak before declining to a 

quasi-steady, higher value (Figure 3.6h). The initial dye response occurs 7hrs after the 

release and peaks at 79ppb. Tracer concentrations decay exponentially with time 

decreasing by ~ 40% with each cycle and with 5ppb remaining after six tidal cycles 

(Figure 3.6h), and the duration of the peaks is consistently 5 hours.  

In summary, peak concentrations range from 45ppb-1038ppb (Table 3.4), and at 

all sites the timing of peaks coincide with low tide. Also, concentrations go to zero at 

high tide and decay exponentially between tidal cycles. Moreover, there is an initial spike 

in concentration at Stations 3, 3 grab, 5 grab and 6, but both Stations 1 and 2 have a 
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single peak per tidal cycle. Hence, the stations in the ebb direction of the injection line 

have single peaks whereas those in the flood direction have multiple peaks.  

Table 3.4 highlights simulated and observed peak concentrations, and the mean 

time series concentration for Stations 1 - 8. Overall, the table shows that the initial 

modeled peak concentrations are typically underestimated by 10ppb – 400ppb with the 

largest offset occurring at Station 5, but in all cases the differences decline with each 

successive tidal cycle (Table 3.4). By the end of the simulation most of the peak 

differences are less than 10ppb. The model also captures an initial peak of 150ppb at 

Station 3, but is completely missed by the hourly observation data (Table 3.4). Also, in 

all eight instances the mean of simulated and observed concentrations are very similar. In 

fact, the means are identical at Stations 1 and 6, and are only different by 1ppb – 40ppb at 

the other six sites, and with the largest mean differences at Stations 3 grab and 5 grab 

where the time series of observation data is the shortest (Table 3.4).  

 In summary, the model results mimic the observed data but there are substantial 

differences. Typically, the early simulation results are least representative with initial 

peak offsets of up to 400ppb, but they improve with time because the actual and 

simulated dye concentration gradients decrease with time as the plume spreads out. In 

addition, plotting the model results with field observations illustrates that there is an 

initial 30 minute offset between observation and simulations, and more importantly that 

this offset declines with time. Moreover, taking the mean of the time series removes 

phasing issues and reveals strong agreement between observed and simulated data. The 

model also captures the initial peak at Station 3 that was completely missed by the 

observed data. 
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3.5.2 DYE TRACER OVER THE BASIN 

Simulation results show that two hours after dye release (three hours before high 

tide) there is dye transport along Groves Creek with a faster moving core (Figure 3.7a). 

This results in a 0.40km - 0.70km long low concentration (< 50ppb) tail on either side of 

Groves Creek and higher concentration center plugs (> 500ppb) reaching the marsh 

interior through the subtidal branches (Figure 3.7a). For instance, high concentrations can 

be seen in the dissected marsh west of the Middle branch (Figure 3.7a, coordinates 

4.976x10
5
, 3.5368x10

6
) and east of the middle branch (4.976, 3.5366). For brevity, we 

will no longer include the 10
5
 and 10

6
 factors when reporting coordinates. Lower 

concentrations are ~ 50ppb, located in Groves Creek to the south of the dye release and 

along the leading edges of the dye plume. Comparably high concentrations also occur in 

the much smaller intertidal creeks along the north side of Groves Creek, which facilitate 

dye transport toward the northeast and east (Figure 3.7a). In some cases the 

concentrations there exceed 500ppb and in all cases the dye is limited to the creek banks 

and downstream of the creek heads.  

At three hours into the dye release or two hours before high tide the maximum 

concentrations remain about 500ppb but shifted eastward and southward (Figure 3.7b). 

This is apparent in the Middle and West branches where 500ppb concentration is located 

farther east relative to Figure 3.7a and they form a front along the marsh interior (Figure 

3.7b). There is also a long tail of 500ppb to the west of the dissected marsh that is 

associated with westward transport along the southern terrestrial border (4.974, 3.5366). 

There are areas of high concentration in the dissected marsh west of the middle branch 

that surround a central area of relatively lower concentration, indicating convergence of 
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flow from the north, west, and east (Figure 3.7b). At the same time, concentrations to the 

west and east of the middle branch are relatively higher than in the channel, indicating 

flow divergence. Lower concentrations < 50ppb occur along creek networks at higher 

elevations centered at 4.978, 3.5372, and in the subtidal channel branches, and along the 

dye plume fringes (Figure 3.7b).  

The orthorectified and color enhanced image (Figure 3.8) represents the 

conditions at 19:32 GMT or 3.5 hours after the dye release. The photo shows areas of 

high concentration along the southern terrestrial boundary, the dissected marsh and in the 

low marsh east of the subtidal system. Also, the color enhancement highlights a faint arc 

of low concentration on the marsh platform north of and parallel to Groves Creek. The 

figure also shows the absence of dye. For instance, although we injected the dye into the 

subtidal system 80m south of Station 2, dye is essentially undetectable in Groves Creek 

and in most of the length of the three subtidal branches (Figure 3.8). Hence, the tidal 

circulation forced the dye from the subtidal to the intertidal zones.  

The model results at 19:00 (Figure 3.7b) accurately mimic the presence of high 

concentration in the air photo (Figure 3.8), as well as the presence of otherwise visually 

undetectable concentrations of dye, indicating that the modeled dye reached this location 

30 minutes ahead of the observations. Nevertheless, figure 3.7b shows that the 

distribution of dye between subtidal and intertidal zones is comparable. Moreover, the 

absence of dye and areas of lower concentration in figure 3.7b exactly match the spatial 

pattern of dye free areas recorded in the air photo. In fact, the model results enable the 

visualization of dye distribution of < 10ppb.   
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 Figure 3.9a shows the dye simulations two hours after high tide. Concentrations 

are more dilute and range from 25ppb - 75ppb throughout the marsh interior and at the 

outer edge of the dye front. The front has a highly irregular shape with “points” that 

likely reflect overmarsh flow routing through intertidal creeks (Figure 3.9a). Also there 

are three areas of higher concentrations between 250ppb – 350ppb in the marsh interior 

(Figure 3.9a). One area is along the terrestrial border to the west (4.974, 3.5366). The 

second is to the east near the head of the major intertidal creek with Station 8, and the 

third occurs in the dissected marsh (4.976, 3.5368). Clearly, some dye leaves the system 

from the large intertidal creek along the eastern marsh edge (Figure 3.9a). 

One hour later (three hours after high tide) the simulations show dye retention in 

the marsh but with limited extent, mainly confined to the south (Figure 3.9b). The ebb 

concentrations are much lower relative to Figure 3.9a, typically in the range of 25ppb – 

60ppb with two areas of higher concentration of up to 150ppb in the southwest (4.972, 

3.5367) and southeast (4.9808, 3.5369). The dye plume extends downstream of the 

injection point, and some trace amounts of dye leave the system through the mouth of 

Groves Creek while much more concentrated dye leaves through the major intertidal 

creek to the east (Figure 3.9b). The irregular-shaped and dilute dye front on the marsh 

platform to the north has an apparent uniform shape between figures, indicating that 

water at the heads of creeks does not flow through the intertidal creek system, but across 

them before entering Groves Creek (Figure 3.9b). The major intertidal system to the east 

is clearly an important part of salt marsh drainage as indicated by the higher 

concentrations feeding into it. In fact, we determined that 12% of the total dye mass 

exited the system from the eastern marsh edge, while 7% exited via the mouth of the 
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main channel over the first full tidal cycle. Moreover, over the full five-day simulation 

interval we found that 53% of the total dye mass exited the system from the eastern 

marsh edge while 32% exited via the mouth of the Groves Creek. The remaining 15% 

was retained in the marsh interior.  

 In summary, the modeled dye transport results highlight the complexity in 

inundation timing and flow direction throughout the basin, and patterns of overmarsh 

circulation. The tracer reveals that the interior dissected marsh area first inundates from 

the east through the Middle branch, and subsequently from the west through the relatively 

longer West branch. Moreover, there is simultaneous flow divergence and convergence in 

the marsh interior. Also, the dye results show differences between flood and ebb 

circulation indicating that water parcels on the flood do not necessarily follow a similar 

but reversed path on ebb. Finally, after six tidal cycles most of the dye was transported 

out of the system via the eastern marsh edge. 

3.5.3 BASIN SCALE CIRCULATION 

 Figure 3.10 shows contours of the simulated free surface elevation during spring 

tide inundation. At 9:00 46% of the area is inundated and the water surface elevation is < 

0.67m (Figure 3.10a). During this time water is confined to the subtidal system, some 

lower intertidal creek networks, and low marsh. Just 20 minutes later 72% is inundated 

including lower areas of the marsh platform; while the higher areas and levees are dry 

(Figure 3.10b). The free surface elevation is 0.76m along the eastern marsh edge, 0.71m 

in the subtidal channel and intertidal creeks, and <0.67m in the marsh interior. At 9:40 

91% of the marsh is submerged, with mostly levees being subaerial (Figure 3.10c). The 

maximum water surface elevation is 0.87m along the eastern marsh edge and 0.79m in 
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the marsh interior. At 10:00 98% of the marsh is inundated and only the highest levees 

along the main channel are dry (figure 3.10d). The water surface is 1.03m along the 

eastern marsh edge, 0.98m in the marsh interior, and 0.95m in the southwest. The 

distance between minimum and maximum elevations is 500m yielding a maximum slope 

of 1.6x10
-4

 toward the southwest and indicating inundation from the basin exterior and to 

a lesser extent intertidal creeks and Groves Creek. At 10:20 99% of the marsh is 

inundated and only the two highest levees along the first and third bend in Groves Creek 

are subaerial (Figure 3.10e). The elevation of the water surface is 1.15m along the eastern 

marsh edge and decreases to 1.11m in the west and the maximum slope toward the 

southwest decreases to 8x10
-5

. At this time the source of water inundating the marsh is 

from the basin exterior, rather than from subtidal and intertidal conduits. At 10:40 the 

entire marsh is inundated and the free surface elevation is > 1.25m. The two highest 

levees remain submerged over the final 20 minutes (Figure 3.10f). 

 Model results also show in-channel variations in surface water topography. At 

9:20 there is a 0.03m higher water level along the outside bank of the second bend in the 

channel. More importantly, the same phenomenon occurs at bends along Groves Creek, 

far from the domain boundaries. This accumulation of water in channel bends has been 

reported by (Georgas and Blumberg, 2003, and others) and it corresponds to the effects 

of centrifugal acceleration.  

 System drainage is illustrated by Figure 3.11. At 12:00 the entire marsh is 

submerged starting with a bulge of water of 1.25m focused in the southwest part of the 

basin (Figure 3.11a). The elevation decreases outward to 1.19m indicating radial drainage 

toward the basin’s eastern perimeter. At 12:20 (Figure 3.11b) the two highest levees 
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along the first and third bends of Groves Creek reemerge. The water elevation decreased 

0.15m in 20 minutes, and the free surface elevations range from 1.11m in the marsh 

interior to 1.02m in the north and along the eastern marsh edge. The distance between the 

minimum and maximum elevations is 500m yielding a slope of 1.8x10
-4

 toward the east 

capable of forcing a strong flow over the eastern marsh edge. At 12:40 all levees along 

Groves Creek become emergent (Figure 3.11c), and the maximum elevation is 0.99m in 

the marsh interior and 0.87m in the north and eastern marsh edges, yielding an increased 

maximum slope of 2.4x10
-4

 toward the east and increased flow over the marsh edge. At 

13:00 the elevation decreases from 0.85m in the marsh interior to 0.67m in the subtidal 

channel and high intertidal creeks. The eastward slope between the marsh interior and the 

eastern marsh edge increases to 3.6x10
-4

. At 13:20 24% of the marsh is subaerial, 

including levees, high areas of marsh platform, and intertidal creeks. The water surface 

elevation is 0.72m across the western low marsh and in the marsh interior (Figure 3.11e) 

and < 0.67m in the subtidal channel, intertidal creeks, and to the west and east of the 

marsh interior. At this time the basin drains toward the west and east of the marsh interior 

through intertidal creeks and Groves Creek. At 13:40 53% of the marsh is subaerial and 

the free surface is < 0.67m (Figure 3.11f).  

In summary, the free surface slopes, and hence the direction of inundation 

changes as the percentage of inundated area increases. Inundation occurs from the 

interior by flow from the subtidal to intertidal creeks during the first four hours when 

46% of the basin is inundated. Between 9:00 and 9:40 inundation increases, the relief of 

the water surface increases to 0.08m and the resulting slope increases to 1.6x10
-4

; also the 

eastern marsh edge, intertidal creeks and the subtidal channels are submerged at this time. 
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Two hours before high tide the entire marsh is submerged, the maximum difference in 

water surface elevation is 0.04m, maximum slope decreases to 8x10
-5

, and there is a 

change in the source of inundation going from the subtidal system to overmarsh flow 

toward the southwest. Similarly, ebb circulation changes with decreasing area of 

submergence. At the onset of drainage water leaves the salt marsh as a type of sheetflow 

outward from the southwest toward the basin perimeter, and it persists for the first 3 

hours of ebb. An hour later the marsh topography becomes subaerial, and there is a 

maximum slope of 1.8x10
-4

 to the east indicating strong flow over the eastern marsh 

edge, followed by flow divergence in the marsh interior. 

Another insightful way to assess basin scale flow is to evaluate the stage-velocity 

association at a station, in this case near the mouth of Groves Creek, Station 1 (Figure 

3.12). The observations show that the peak flood and ebb velocities are comparable and 

have the characteristic asymmetry with ebb dominance (Myrick and Leopold, 1963; 

Boon, 1975; Pethick, 1980; French and Stoddart, 1992; Fagherazzi et al., 2008). In 

particular, peak flood velocity occurs at a higher stage than peak ebb. For example, on the 

spring tide the peak occurs at 1.15m and peak ebb occurs at 0.40m (Figure 3.12). 

Meanwhile velocity reaches 0.51m/s between a low tide elevation range of -1.68m - 

0.63m. Subsequently, there is a surge in velocity reaching a peak of 0.93m/s at 1.15m 

(Figure 3.12). Currents then reverse and peak ebb velocity of -0.95m/s occurs at 0.7m.  

The modeled stage-velocity relationship is comparable. Overall it shows flood 

velocity increases to 0.52m/s between a low tide range of -1.67m - 0.62m (Figure 3.12). 

This is followed by a surge in velocity reaching a peak of 0.69m/s at 0.93m. Currents 

reverse and peak ebb of -0.95m/s occurs at 0.35m. Velocities then decrease between peak 
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and low tide and much more rapidly than during flood. Comparing the observed and 

simulated data shows that the model accurately predicts the overall stage-velocity 

relationship for Station 1.  

Both the simulated and observed datasets show ebb velocities decreasing at a 

faster rate than during the same stages of flood. Moreover, the model captures the surge 

in flood velocity at stages when the topography is submerged and overmarsh flow is 

initiated (Boon, 1975; French and Stoddart, 1992). Both curves also show comparable 

asymmetry between peak flood and ebb velocity during higher stages. Specifically, peak 

flood is tied to the marsh platform elevation, as expected. Together these observations 

and analyses show that the modeled and observed flows at the mouth of the main channel 

are comparable, and the “upstream” overmarsh flow processes that give rise to the 

velocity-stage shape and distributions are also comparable, as well.  

A third metric for assessing basin scale flow makes use of residence time, an 

estimate of the duration of a water parcel in the basin system. The tracer residence time 

(Rt) expressed through equation 3 and calculated from the observation data at Stations 1, 

2, 3, 6, 7 and 8 ranges from 1.09 – 1.12 days with an average of 1.07 days (Table 3.5). 

The modeled Rt values are comparable, ranging from 1.02-1.12 days (Table 3.5). 

Therefore, we can expect that the innermost water parcels will be flushed from the 

system within about 1 day.  

3.5.4 MACRO SCALE CIRCULATION 

At two hours before high tide the mean depth of water on the marsh platform is 

0.58m. The mean velocity over the platform and eastern marsh edge is 0.02m/s and 

0.08m/s, respectively (Figure 3.13a). The average flow vectors along the eastern marsh 
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edge and in the north (Figure 3.13a coordinates 4.980, 3.5372) indicate inundation 

predominantly from the basin edges as opposed to the channel network. However, in the 

southern marsh interior centered at approximately (4.977, 3.5366) there is divergent flow 

toward the west and east along the southern boundary (Figure 3.13a). Also, there is 

clockwise flow centered at 4.981, 3.5368 over the marsh interior with an average speed 

of 0.05m/s; decreasing to 0.03m/s along the central marsh interior where east - west 

convergence occurs. Hence, during flood and over the relatively short distances 

associated with this basin we find that overmarsh circulation concomitantly includes 

convergence and divergence in the marsh interior, and primarily convergence from the 

basin perimeter.  

 Figure 3.13b sheds light on local flow two hours after high tide. The mean 

velocity over the marsh platform and eastern marsh edge is 0.04m/s and 0.11m/s, 

respectively, and both show three circulation patterns during ebb. First, there is 

counterclockwise flow (Figure 3.13b) centered at (4.981, 3.537) that extends from the 

southwest across the marsh interior at 0.08m/s (Figure 3.13b). Second, there is flow 

divergence from the marsh interior toward the west and east of the counterclockwise flow 

path. Third, there is flow toward the basin exterior north of the marsh platform (4.980, 

3.5374), and over the eastern marsh edge. Hence, the flows during ebb show similar 

complexity as with flood, with a range of flow directions over a relatively short time 

interval.  

 In summary, during flood, three distinct circulation patterns occur simultaneously. 

First, there is inundation toward the southwest from the basin exterior. Second, there is 

clockwise flow over the marsh interior. Third, there is flow divergence toward the east 
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and west along the southern extremities of the basin, and flow convergence in the marsh 

interior. Ebb circulation differs from flood in that ebb velocities are stronger relative to 

flood. Also, flow across the marsh interior is counterclockwise, and there is flow 

divergence to the east and west of the marsh interior.  

3.5.5 MESO SCALE CIRCULATION 

The meso scale results from transects 1a and 1b are presented as a water balance 

across each. These two transects were used because basin scale analyses revealed that 

there are two sources of water to the marsh interior; Groves Creek and the Wilmington 

River. The net volume of water that crosses transect 1a during flood is -3,452m
3
 while for 

ebb it is +8,498m
3
 (Table 3.6). Therefore, the difference between flood and ebb is 

+5,046m
3
 over the full tidal cycle. Flood and ebb volumes across transect 1b are -

3,700m
3
 and +11,720m

3
, respectively, with net volume of +8,020m

3
. Both have positive 

net transport over the full tidal cycle indicating net flow away from the marsh interior. 

Meanwhile, information gleaned from the net flows across transects 2a-2d are 

taken to represent flows within the marsh interior. Water volumes range from -2,459m
3
 to 

-16,080m
3
 for flood and +4,280m

3
 to +28,428m

3
 for ebb (Table 3.6). The differences 

between flood and ebb range from +1,741m
3
 to +22,407m

3
. All four transects have 

positive net transport over the full tidal cycle and collectively they indicate net 

counterclockwise or rotational flow within the marsh interior.  

3.5.6 GROVES CREEK CIRCULATION – MICRO SCALE 

 At the micro scale we assess the current velocity time series for two intertidal 

creeks with a dogleg structure (Figure 3.3) to illustrate the local control of topography on 

overmarsh circulation. Creek 1 is inundated from the south at 3 hours into the flood cycle 
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(Figure 3.14a). Currents are confined to the channel and both locations reach a peak flood 

velocity of 0.09m/s. At approximately 0.67hrs later the water level is 0.53m and currents 

in both sections flow from the northwest, and velocity is 0.06m/s lower. The consistent 

southeastward flow through both sections of the dog-leg indicates the onset of overmarsh 

flow which continues at 0.02m/s until high tide (1.45m).  

At the start of ebb the water level is 1.44m and the depth averaged currents in 

both the north/south and east/west sections are from the west at 0.04m/s (Figure 3.14a). 

One hour into ebb the water level declines to 1.28m and overmarsh currents reverse 

reaching a peak of 0.26m/s. Four hours after high tide the water level is at 0.45m and the 

creek banks become subaerial. At this time the in-channel currents reverse and flow from 

the north-northeast at 0.09m/s.  

 Creek 2 is inundated 2hrs into flood when the water level is -0.42m and currents 

are confined by the banks. At the same time there is convergence from the subtidal 

channel and eastern marsh interior (Figure 3.14b). At 0.33hrs later in-channel currents 

reverse and flow from the north occurs when the water level reaches -0.14m, and 

develops a peak velocity of 0.20m/s. Four hours into flood the topography is submerged 

and at that time overmarsh currents flow from the northeast at 0.03m/s until high tide 

(Figure 3.14b).  

 With the onset of ebb, overmarsh flow is from the southeast at 0.04m/s (Figure 

3.14b). The topography becomes subaerial three hours into ebb at a water level of 0.69m. 

At this time in-channel currents reverse and reach a peak velocity of 0.23m/s. Four hours 

into ebb there is another current reversal at -0.27m, and flow is from the northwest at 

0.07m/s.  
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In summary, Creek 1 activates three hours into the flood tide and creek banks are 

submerged less than an hour later. During ebb this creek is active for 2 hours. Creek 2 has 

a relatively lower bed elevation than Creek 1, activates at two hours into flood, and is 

submerged 2 hours longer, but it reactivates during the last 3 hours of the ebb tide. The 

velocity and direction of in-channel and overmarsh currents supports the reported 

observations for meso, macro, and basin scale results by collectively showing clockwise 

and counterclockwise patterns of overmarsh flow during flood and ebb, respectively. 

3.6 DISCUSSION 

We define complexity in overmarsh circulation as the variation in current 

direction and magnitude over relatively short time intervals of about 10 minutes. Flow 

complexity has been a common theme in salt marsh flow studies (Eiser and Kjerfve, 

1986; Kjerfve, 1991; Christiansen  et al., 2000; Temmerman et al., 2005; Torres and 

Styles, 2007; Mariotti and Fagherazzi, 2011); yet no studies have characterized this 

complexity for a comparably large section of salt marsh as conducted here, and none 

have addressed its origin. Here we found that the source for the onset of complex 

overmarsh circulation is the submergence and emergence of the very subtle salt marsh 

platform relief. For example, emergent topography can completely shut off some flow 

pathways while initiating new ones.  

 The spatial variability in dye concentration from the model largely replicates field 

observations as indicated by the strongly positive ME values. Results were somewhat less 

robust at Stations 3, 5 and 8. We propose that the Station 3 (ME = 0.36) discordance 

arose because the simulations produced a large initial spike in concentration that was not 

detected in the hourly observation data. Given equation 2 this translates directly to a poor 
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model performance. The lower ME for Station 5 likely is a product of the phase offset 

between simulation and observation over the full two hour record for these grad samples. 

However, phase shifts are also apparent with all comparisons of simulated and observed 

but the shift declines over the 5-day interval. Therefore, given the short record of 

comparison and the exclusion of the latter data for comparison the Station 5 ME value 

reflects substantial discordance. At Station 8, the only station in the intertidal zone and 

the one most distant from the injection line has a weak performance that is also 

attributable to phasing. In this case the observed initial spike increase in concentration 

occurs earlier than the simulated. This may have arisen due to the longer and 

hydrodynamically rougher intertidal zone distance that water must traverse to reach the 

station.  Despite these limited shortcomings, the dye response at all stations was well 

represented by the model, and provides reliable background flow information on system 

wide inundation and drainage.  

 Residence time, Rt gives an estimate of the duration of a water parcel in the basin 

system, and the simulation results show that Rt is about 1.11 days. This residence time is 

28% greater than the basin flushing time, Tf, most likely because of the spatial and 

temporal variability of underlying physical processes controlling overmarsh circulation.. 

Additionally, Blanton et al., (2010) measured concentrations from a site proximal to 

Station 2, and they estimated Rt of 1.62 days. Therefore, our values are about 0.5 days 

shorter, and they further constrain plausible estimates of Rt in salt marsh systems. 

Dye circulation patterns reveal that the sheet flow over the largely flat salt marsh 

landscape is not homogeneous, but has strong temporal and spatial variability that arise 

from simultaneous convergence, divergence and rotation in the marsh interior during 
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flood. This type of complexity in overmarsh circulation is important in salt marshes 

because it strongly influences the distribution of suspended and dissolved nutrients, 

larvae distribution, and contaminant dispersal (Valiela et al., 1978; Kneib, 1984; Blanton 

et al., 2010). For instance, the flow fields in Figures 3.13a and 3.13b illustrate the source 

of the dye front that occurs 2hrs before high tide. The dye circulation also shows that 

there is considerable drainage directly over the eastern marsh edge during ebb. Hence, a 

parcel of inundation water does not necessarily follow the same track between flood and 

ebb (e.g., French and Stoddart, 1992). The dye response also highlights spatial variability 

in flow complexity throughout the Groves Creek system. For instance, stations located in 

the ebb direction of the injection have single peaks coincident with low tide, whereas all 

other stations have double peaks, one on the ebb and one on the flood limbs of tidal stage. 

A similar response in salinity was reported by Warner et al. (2006) who attributed the 

double peak to confluence effect at tributary channels (Warner et al., 2006). On the other 

hand Station 8 has a double peak as well, but for entirely different reasons.  The 

difference resides with the fact that Station 8 is intertidal zone. Here the double peak is a 

result of the intermittent drying of the creek bed with low tide and the movement of the 

dye tracer back and forth over the site with each tidal cycle. Taken together, the dye 

response and underlying flow conditions highlight overmarsh flow complexity across 

relatively large distance and at a range of spatial scales.  

Analyses at the four spatial scales of flow highlight patterns of overmarsh current 

direction, and two of the four highlight both direction and magnitude. At the basin scale 

we saw that the direction of inundation and drainage changes over short time intervals 

and this, in turn, is related to the degree that the marsh remains subaerial. At the macro 
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scale, we show flow direction and magnitude for intermediate tidal stages. The data 

analyses clearly show that there is simultaneous convergence and divergence, as well as 

rotational flow and substantial flow over the marsh edge.  

At the meso scale flows across transect 1 indicate that net transport is away from 

the marsh interior, and ebb dominant. The variability between 1a and 1b may be set by 

the average transect elevation with 1a at 0.62m ±0.09m, and 1b at 0.56m ±0.15m. Also, 

these transects essentially represent water exchange between the marsh interior and 

Groves Creek, and the marsh interior and the Wilmington River, 1a and 1b, respectively. 

Therefore, we contend that the net fluxes reflect a type of circulation where water 

inundates the marsh through the channel network but principally drains over the marsh 

edge. This is consistent with the tracer and macro scale flow results. We also show 

positive net flow for transects 2a-2d and this is taken with their respective spatial 

arrangement to indicate counterclockwise rotation during part of the tidal cycle (Figure 

3.3, Table 3.6).  

At the micro scale we show that intertidal creeks are active only during a small 

portion of the tidal cycle, and for about one hour longer during ebb tide than flood. The 

time that intertidal creeks convey flow is of course dependant on bed elevation, and these 

vary substantially. The intermittent control of topography on local in channel currents 

together with shifts in the larger scale barotropic pressure gradient give rise to additional 

current reversals during flood and ebb (e.g. Torres and Styles, 2007; Fagherazzi et al., 

2008). Clearly, topography is an important control on overmarsh circulation. In a recent 

study, Blanton et al. (2010) conducted numerical simulations over the same study site, 

Groves Creek, but they used a bathymetric domain derived from a coarse lidar dataset. 
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This means that their study did not include the effects of relatively small scale variations 

in topography or geomorphic structure. Overall, their current simulation results were 

fairly robust but their simulated dye plume failed to match the field observations in that 

the dye did not reach the southern basin edge. Also, the dye was retained in the marsh 

interior for a prolonged interval. Here we improve on this effort by resolving the subtle 

geomorphic structure and evaluating its effects on flow. Overall, the dye reached deeper 

into the system but our estimates for tracer residence time were much shorter than 

Blanton et al.  Our findings lead us to question the level of topographic detail needed to 

adequately replicate overmarsh flow processes. Finally, future work is needed to address 

the combined role of topography and vegetation drag on the temporal and spatial 

variability in overmarsh circulation and morphodynamics. 

3.7 CONCLUSIONS 

The simulation results from Delft3D are robust and in most cases produced a 

model efficiency greater than 0.90. This is primarily due to the extremely high quality 

salt marsh DEM and the range and quality of field data for calibration and validation. 

Numerical assessments of dye transport and circulation reveal strong complexity in 

overmarsh currents with the temporal evolution of inundation, and drainage at water 

levels within 0.2m of the mean platform elevation. Moreover, over the full five-day 

simulation interval we found that 53% of the dye mass exited the system at the eastern 

marsh edge, while 32% exited via the mouth of Groves Creek. At the basin scale 

(1,000m) the marsh platform is initially inundated from the marsh interior but as the tide 

continues to rise flooding occurs from the basin edges, and this gives rise to the onset of 

overmarsh flow. At the macro scale (100m) flow paths are highly variable with strong 
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differences between ebb and flood circulation. At the meso scale (10m) we detected 

rotational flow over the marsh interior and across channels. At the micro scale (1m) local 

in-channel currents are intermittently controlled by the channel banks but at higher tide 

stages the larger scale barotropic pressure gradient causes the currents to flow across tidal 

creek networks. 
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Table 3.1 List of instruments at the eight observation stations 

Station  Instrument Type 

1 ADCP, SBE16 CTD, Wetlabs FLRHSB 

2 ADCP, Wetlabs FLRHSB 

3 ADCP, SBE16 CTD, Wetlabs FLRHSB, grab samples 

4 ADCP 

5 ADCP, grab samples 

6 ADCP, Wetlabs FLRHSB 

7 ISCO sampler, SBE16 CTD 

8 SBE16 CTD, Wetlabs FLRHSB 
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Table 3.2 A list of literature sources for Manning’s roughness coefficients for vegetated 

and unvegetated marsh. Citations with an asterisk were final selections for the study. 

Author Study Site Type Manning's n 

Shih and Rahi (1982) Subtropical marsh 0.16 – 0.55 

Kierfve et al., (1991) Vegetated marsh 0.20 – 0.30 

Leopold et al., (1993) Marsh channel 0.28 – 0.063 

Tsihrinitzis and Madiedo (2000) Vegetated marsh 0.02 – 1.00 

Wilson and Horritt (2002) Submerged vegetation 0.05 

 Unsubmerged vegetation 0.23 

French (2003) Subtidal channel *0.017 

 Intertidal channel 0.022 

 Tidal flat 0.035 

 Marsh platform *0.10 

Lawrence et al., (2004) Marsh platform 0.07 

 Moderately rough channel 0.03 

Lesser et al., (2004) Uniform marsh 0.028 

Temmerman (2005) Marsh bottom roughness 0.006 

Loder et al., (2009) Sea bed 0.02 

 Marsh creek bed 0.02 

 Platform with tall grass 0.035 

Cea and French (2012) Subtidal channel 0.02 

 Low intertidal marsh 0.03 

 High intertidal marsh 0.05 
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Table 3.3 Model efficiency values for water level, velocity and dye tracer concentration. 

 Water Level ME Velocity ME Dye Tracer ME 

Station 1 0.99 0.92 0.83 

Station 2 0.99 0.92 0.82 

Station 3 0.99 0.82 0.36 

Station 3 grab n/a n/a 0.62 

Station 4 0.99 0.86 n/a 

Station 5 0.92 0.94 0.35 

Station 6 0.99 0.85 0.58 

Station 7 n/a n/a 0.76 

Station 8 n/a n/a 0.30 
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Table 3.4 Observed and simulated peak concentrations in ppb, record mean and standard 

deviation for Stations 1-8. Asterisks denote values calculated for a single tidal cycle. 
  Station 1 Station 2 Station 3 Station 3 

grab 

Station 5 

grab 

Station 6 Station 7 Station 8 

Peak 1 

OBS 

45 103 13 588 1038 574 170 79 

Peak 1 

SIM 

37 76 150 489 674 495 155 50 

Peak 2 

OBS 

28 52 130 n/a n/a 119 89 57 

Peak 2 

SIM 

23 41 63 43 55 90 125 90 

Peak 3 

OBS 

17 30 65 n/a n/a 55 54 34 

Peak 3 

SIM 

16 25 32 23 33 48 68 89 

Peak 4 

OBS 

11 18 40 n/a n/a 34 38 17 

Peak 4 

SIM 

10 17 20 14 20 40 40 42 

Peak 5 

OBS 

7 11 21 n/a n/a 18 21 12 

Peak 5 

SIM 

6 10 13 8 13 25 23 19 

Peak 6 

OBS 

4 6 14 n/a n/a 12 16 5 

Peak 6 

SIM 

4 6 8 6 8 12 11 16 

Peak 7 

OBS 

n/a n/a 8 n/a n/a 6 8 n/a 

Peak 7 

SIM 

n/a n/a 5 4 4 6 9 n/a 

Record 

Mean 

OBS 

5 15 22 85* 168* 27 41 13 

Record 

Mean 

SIM 

5 13 12 124* 183* 27 28 14 

STDV 

OBS 

10 25 28 165* 304* 45 37 21 

STDV 

SIM 

9 19 16 145* 196* 46 30 17 
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Table 3.5 Tracer residence time (Rt) in days for Stations 1, 2, 3, 3 grab, 5 grab, 6, 7 and 

8. 

 St. 1 St. 2 St. 3 St. 3g St. 5g St. 6 St. 7 St. 8  

Observed 1.12 1.09 0.97 n/a n/a 1.04 1.09 1.09 

Simulated 1.18 1.2 1.07 1.14 1.14 1.08 1.02 1.12 



www.manaraa.com

 

64 

Table 3.6 Net volume transport resulting from the meso scale analysis from transects 1a 

and 1b, and 2a, 2b, 2c and 2d. 

Transect Net Flood m
3
 Net Ebb m

3
 Net Volume m

3
 

1a -3452 +8498 +5,046 

1b -3700 +11720 +8,020 

2a -2539 +4280 +1,741 

2b -16080 +28428 +12,348 

2c -8146 +20666 +12,520 

2d -2459 +24866 +22,407 
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Figure 3.1 Groves Creek is a semi-enclosed creek-marsh system located approximately 

20 km south of Savannah GA, USA. The shading of the imagery reflects variations in 

vegetation density. Specifically, lighter shades in the dissected marsh and along creek 

heads are associated with unvegetated mud. Darker shades along levees and creek banks 

reflect areas of dense vegetation. Medium shades are associated with the vegetated marsh 

platform. The lighter shading of the marsh platform in the northeast is associated with an 

area of sparsely vegetated high marsh. Groves Creek has three subtidal branches labeled 

E, W and M for East, West and Middle, respectively. The white dashed line outlines the 

“marsh interior”. Within the marsh interior is the “dissected marsh” which is bounded by 

the West and East subtidal branches.
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Figure 3.2 Tidal oscillations for a two week period showing the transition from neap to spring tide. The black box marks the 5-day 

study period. The smallest and largest tidal ranges during the study period are highlighted with gray and striped boxes, respectively, 

and are referred to as “neap” and “spring”. All water levels are referenced to NAVD88.
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Figure 3.3 The high resolution GPS DEM is shown. White to black on the color bar 

represents the elevation range associated with levee, marsh platform, low marsh, 

intertidal creeks, and subtidal channel, respectively. White circles mark the locations of 

pressure sensors, ADCPs, fluorometers, and grab samples. The small gray line south of 

Station 2 marks the location of the dye release. The white lines throughout the marsh 

interior represent the six transects used to estimate meso scale flux. Transects lengths are 

500m for 1a and 1b and 50m for 2a, 2b, 2c, and 2d. The + and - illustrate the flow 

convention for the meso scale analysis. For transects 1a and 1b, positive flows represent 

net transport away from the marsh interior. For transects 2a-2d, positive flows represent 

net counterclockwise flow within the marsh interior. Finally, the locations of dogleg 

creeks 1 and 2 selected for the micro scale assessment are highlighted with black boxes.
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Figure 3.4 The calibrated water level timeseries at Stations 1, 2, 3, 4, 5, and 6. Lines with and without symbols represent observed and 

simulated water levels, respectively.
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Figure 3.5 The calibrated depth averaged velocity time series at Stations 1, 2, 3, 4, 5 and 6. Lines with and without symbols represent 

observed and simulated velocities, respectively. The dashed gray horizontal line marks zero velocity. Flood and ebb velocities are 

negative and positive, respectively.
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Figure 3.6 Time series showing the observed and simulated dye tracer response at Stations 1, 2, 3, 3 grab, 5 grab, 6, 7 and 8. Lines 

with and without symbols represent the observed and modeled data, respectively. The dashed gray line represents the water level time 

series for each station. A black tick mark highlights the timing of the dye release. All y-axis have a consistent scale and concentrations 

greater than 200 ppb are out of the plot boundary.
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Figure 3.7 Images of the simulated dye tracer plume (a) at 18:00 GMT or three hours 

before high tide and (b) at 19:00 GMT or two hours before high tide. Warm and cool 

colors represent high and low dye concentrations, respectively. Concentrations are 

superimposed onto the -0.79m - 0.20m intertidal creek contour. The red line marks the 

location of the dye release. Water levels over the tidal cycle are shown in the upper right 

corner and the red arrow coincides with the time of the dye map.
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Figure 3.8 Ortho-rectified aerial photograph taken at 19:32 GMT during the field dye 

tracer experiment. Areas of bright and lighter shades of red represent high and low 

concentrations, respectively. The red line marks the location of the dye release.
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Figure 3.9 Images of the simulated dye tracer plume (a) at 22:00 GMT two hours after 

high tide and (b) at 23:00 GMT three hours after high tide. Warm and cool colors 

represent high and low dye concentrations, respectively. Concentrations are 

superimposed onto the -0.79m - 0.20m intertidal creek contour. The red line marks the 

location of the dye release. Water levels over the tidal cycle are shown in the upper right 

corner and the red arrow coincides with the time of the dye map.
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Figure 3.10 A series of maps showing the free surface elevation at 0.33hr intervals during the spring flood tide. Warm and cool colors 

represent high and low water surface elevation, respectively.
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Figure 3.11 A series of maps showing the free surface elevation at 0.33hr intervals on the spring ebb tide. Warm and cool colors 

represent high and low water surface elevation, respectively.
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Figure 3.12 Station 1 velocity-stage relationship from observed and modeled data. The 

black and blue dots represent observed and simulated values, respectively. Flood values 

are negative.
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Figure 3.13 Flow vectors for the (a) flood and (b) ebb cycles of the spring tide. The vectors highlight clockwise and counterclockwise 

flow paths across the marsh interior during respective flood and ebb cycles.
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Figure 3.14 Velocity vector time series from dogleg creeks 1 and 2. Red and black 

vectors represent the north/south and east/west sections, respectively. An inset is 

provided to illustrate the topographic structure of each creek. White circles mark the 

east/west and north/south points in the doglegs. Water levels are superimposed as a 

dashed blue line.
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CHAPTER 4  

ON TOPOGRAPHY AND OVERMARSH CIRCULATION 

4.1 ABSTRACT 

We progressively smooth a high resolution, high precision salt marsh DEM to 

assess the effect of variable topography/bathymetry on simulations of overmarsh 

circulation. Field measurements of current velocity, water level and dye tracer 

concentrations at various stations provide information for model validation. Topographic 

smoothing progressively reduced the basin drainage density by 97%, and in the course of 

averaging removed small scale intertidal creeks and creek networks. Nevertheless, 

simulation results show nominal effects up to a 50m x 50m grid smoothing whereupon a 

system-wide change from ebb to flood dominance occurs. Assessments of dye tracer 

response indicate successively greater dispersal in the marsh interior during flood and 

higher concentration water exiting the system via a short-circuiting intertidal creek 

network, e.g., water parcels enter and exit the system along different flow paths. 

However, with a 50m x 50m smoothing the dye dispersal is less expansive, more dye 

retention occurs in the interior and lower concentration dye exits the short-circuiting 

creek. Dye retention times progressively decrease for the small scale smoothings and then 

increase for the 50m x 50m and greater smoothings. Consequently, tracer retention times 

appear to be set by the subtle geomorphic structure of the landscape, and the presence of 

short-circuiting conduits. Overall, DEM smoothing with a less than a 50m x 50m grid
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 average had a nominal effect on overmarsh circulation. Hence, smoothing out small 

scale intertidal creeks and creek networks reveals their minor role in overmarsh 

circulation, while excessive smoothing caused the system to change from ebb to flood 

dominance. 

4.2 INTRODUCTION 

New and improved technologies have allowed for the rapid acquisition of large 

swaths of topographic – bathymetric data to facilitate a range of studies. The variable 

quality and density of resulting DEMs has led to questions about how DEM differences 

might affect the representation of flow processes at the ocean bed (Malekia, 2014), as 

well as in terrestrial channels (McKean et al., 2014). Similar issues have also arisen for 

estuarine landscapes. For example, Cea and French (2012) investigated the sensitivity of 

estuarine shallow water flow models to uncertainties in bathymetry and bed friction. 

They found a strong response in current velocity to bathymetry, while water level 

fluctuations were influenced more by bed friction. In another study, Camacho et al., 

(2013) performed uncertainty analysis for 3D hydrodynamic simulations to determine the 

impact of bathymetric error. They documented strong influence of bathymetry on current 

velocity and water salinity for locations where DEM depths were shallower than field 

observations.  

These findings contrast with the results of Temmerman et al. (2005). They used a 

3D hydrodynamic–sediment transport model on a 0.05km
2
 tidal creek catchment to assess 

the interactions of topography, vegetation, and water level fluctuations on spatial 

variations in flow and sedimentation. Their flow domain was a lidar DEM reduced to 3m 

point spacing with a vertical accuracy of 0.13m. Hence, depressions and creek systems
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 that were less than 3m wide were filled in and their effects excluded. Despite this 

apparent limitation the model validation was successful and the adjusted DEM did not 

significantly influence simulation results. More recently, Falcao et al., (2013) 

investigated the influence of grid size and bathymetric interpolation errors in simulating 

the flooding of intertidal areas. They found that a 5m grid with vertical offsets of up to 

0.25m had a very limited impact on the computation of high water levels and aerial extent 

of inundation, but found discordance in model results for the low spring tide. 

 In a salt marsh tracer and modeling study Blanton et al. (2010) successfully 

replicated hydrodynamics of subtidal channels; however, the modeled dye plume 

distribution and concentrations were less successful. These results led the authors to 

propose that marsh circulation is highly sensitive to small-scale variations in topography, 

and in particular to first order intertidal creeks. Recently, the Blanton et al. salt marsh 

basin was surveyed in high detail using RTK GPS that produced a 1m DEM with 0.02m 

vertical accuracy. This high resolution DEM was used in simulations of overmarsh flow 

to highlight complexity in salt marsh circulation (Sullivan et al., 2015) and model results 

were robust; they accurately replicated observations of dye concentration, pressure, 

velocity, and local currents. Moreover, the model revealed highly complex flow patterns 

in space and time that arise from the submergence-emergence of topography.  

In this study, we progressively smooth a high precision and high accuracy DEM 

to gradually reduce topographic detail. The smoothed DEMs were used in hydrodynamic 

simulations to ascertain the quality of DEM data needed for representative salt marsh 

flow simulations. Consequently, the progressive smoothing will provide deeper insight 

into the role of microtopography and intertidal creeks in overmarsh circulation. Here we 
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highlight the effect of smoothing on free surface elevation, velocity and flux, and with 

dye circulation and residence time. 

4.3 STUDY SITE 

The study site is a 2km
2
 semi-enclosed salt marsh centered at 31.970°, -81.021°, 

~20 km south of Savannah, Georgia, USA (Figure 4.1). The local tidal regime is mixed, 

semi-diurnal, ebb dominant with a mean tidal range of 2.5m and a tidal period of 12.4hrs 

(NOAA Station TEC3411). The local tidal range varies from 1.54m and 3.20m for neap 

and spring conditions, respectively (Station 1, Figure 4.2). The basin is bounded by 

forested land to the west and south where the forest-marsh edge is defined by a 1-3m 

cliff. Groves Creek is the main channel and it is 3.8km long from the mouth, but at 3.2km 

it splits into three ~30m wide subtidal branches; the West, Middle and East. The West 

and East branches surround an area of marsh that is highly dissected by complex 

networks of intertidal creeks (Figure 4.1). From the mouth of Groves Creek it is 11km to 

the coastal ocean, along the Wilmington River.  

The vegetation is a monoculture of the smooth cordgrass Spartina alterniflora (S. 

alterniflora) with spatially variable density and height that depend on surface elevation. 

In a related study we found that channel banks and levees typically have the tall form of 

S. alterniflora with stem heights that exceed 2m and a density of 112stems/m
2
. The short 

form has an average stem height of 0.28m ±0.25m, a stem density of 446stems/m
2
,
 
and it 

typically occurs on the marsh platform. The intertidal creeks are unvegetated with a 

relatively smooth mud cover, and with oyster beds at some creek mouths. 

During a typical neap high tide the marsh platform and levees remain subaerial, 

but during spring conditions they are submerged. For this study we conduct simulations 
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corresponding to conditions from October 31
st
 to November 5

th
, 2010 as the tides 

transition from neap to spring with tidal ranges going from 2.1m to 3.2m. Hereafter, for 

brevity we refer to these stages as "neap" and "spring", with peak free surface elevations 

of 0.78m and 1.45m, respectively. At neap high tide the depth of water over the marsh 

platform is 0.33m and levees remain subaerial. During the spring high tide the depth of 

water over the marsh platform is 1.0m and the entire basin is submerged. 

4.4 METHODS 

4.4.1 MODEL DESCRIPTION AND SETUP 

Here we use the validated Delft3D model reported by Sullivan et al. (2015). The 

simulation package consists of integrated modules to compute water currents, water 

quality, and particle transport. The standard hydrodynamic module is Delft3D FLOW and 

it accurately simulates flows where horizontal length scales are significantly larger than 

the vertical (Lesser et al., 2000). It relies on a finite-difference approach to compute 

water level and depth averaged velocity at each node. The output is subsequently coupled 

to the PART module to simulate the advection and diffusion of particles. Delft3D PART 

accounts for the random spreading of particles through the horizontal dispersion 

coefficient HD  defined by Equation 1 (Csanady, 1973)  

(4.1)        b

D atH =  

where t is the length of time that a particle of water stays in the system, and a and b are 

coefficients that emerge from the model calibration. For these 2D flow simulations a 

roughness length parameter is specified through model calibration, and this in turn helps 

determine the logarithmic velocity profile.  



www.manaraa.com

 

84 

Flow is simulated on a grid with uniform 1m horizontal spacing with 5x10
6
 

computational nodes. The domain is closed to the west and south along the terrestrial 

border, and closed to the north along the outer bank of Groves Creek. The domain is open 

to flow along the eastern boundary defined by the observed water level time series from 

Station 1. Positive and negative values of flow are in the direction of increasing or 

decreasing X or Y, respectively. The origin of the computational domain is west of the 

open flow boundary, and therefore flood velocities are negative and ebb velocities are 

positive.  

The horizontal eddy viscosity is set to 0.0005m
2
/s (Temmerman, et al., 2005) and 

bottom roughness is applied as two spatially variable Manning's n values that follow from 

model calibration. The Manning's n for vegetated and unvegetated marsh are set to 0.10 

and 0.017, respectively, comparable to the range of published salt marsh values reported 

in the literature (see summary in Sullivan et al., 2015). In order to establish experimental 

control, it is necessary to hold the bottom roughness constant while altering the salt 

marsh landscape. This means that we assume the area corresponding to channel bed 

roughness is held constant for each smoothing interval although the channel may 

experience widening in the smoothing process. This widening however has a negligible 

effect on simulation results, as explained below.  

The modeled dye tracer consists of 7x10
6
 particles, the maximum number 

required to achieve the highest level of accuracy while maintaining computational 

efficiency. The accuracy of the tracer simulation is set as the lowest concentration that 

can be represented by a single particle in a computational cell; in this case it is 4ppb. 

Horizontal dispersion parameters are set to a = 0.20m
2
/s and b = 0.02, and a roughness 



www.manaraa.com

 

85 

length of 0.001m follow from model calibration. A computational time step of 0.025 

minutes is used to establish numerically stable simulations, and results are output at 10 

minute intervals.  

4.4.2 MARSH STRUCTURE AND DRAINAGE DENSITY 

The high resolution DEM is used to generate an elevation contour map to 

highlight the 2D structure of the marsh landscape, calculate the area of land features, and 

the help estimate the drainage density, (Dd) of intertidal creeks. Conventionally, Dd of a 

network is the ratio of total creek length divided by the watershed area. Here, we use the 

total creek length and total basin area. Creek length is estimated by taking the length of 

the 0.20m contour that outlines individual creeks. The 0.20m contour was selected 

because field observations indicate that this elevation represents the "break line" between 

creek edge and platform. We then halve each creek contour length and define that value 

as creek length. The basin area is held constant at 1.4km
2
, the total area with intertidal 

creeks.  

4.4.3 DEM SMOOTHING 

The high resolution DEM is systematically smoothed to remove topographic 

detail using the "mean focal window" approach in ArcGIS where the mean elevation of 

an n x n non-overlapping window is computed. Window sizes used are 10x10m, 17x17m, 

50x50m, and 100x100m hereafter referred to as 10, 17, 50, and 100. The resulting 

smoothed DEMs are characterized as described above. We then evaluate intertidal flow 

conditions at three spatial scales 10m, 100m, and 1,000m, and we assess the 

corresponding dye tracer distributions at-a-station and spatially.  

4.4.4 DEM SMOOTHING AND DYE CIRCULATION 
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We assume the dye is conservative (Blanton et al., 2010) and for each simulation 

with smoothed topography the dye circulation is compared to the initial or unsmoothed 

results. To assess the role of topography we first evaluate the dye distribution at two 

hours before and after high tide using ArcGIS. We then subtract the concentrations of the 

smoothed DEMs from the initial values (smoothed – initial) at each node and present the 

result as "difference maps". Further, we quantify changes in tracer residence time at 

various stations, and for each simulation. Residence time, Rt helps characterize 

topographic control on the time required for a parcel of water to enter and exit the 

system. Assuming concentration of the tracer decreases exponentially with time (after 

Miller and McPherson, 1991) residence time is computed as: 

(4.2)  kt

oeCtC
−

=)(  

                                           (4.3)                 
k

Rt
1

=  

where at each station C(t) is the concentration at time t, Co is the initial concentration, and 

k is a decay constant taken as a first order removal rate. Residence time (Rt) is the inverse 

of the removal rate.  

4.4.5 DEM SMOOTHING AND OVERMARSH CURRENTS 

The scales of overmarsh flow analyses are basin (1,000m), macro (100m) and 

meso (10m). These length scales are not necessarily the lengths of associated 

measurements but instead they are taken to represent the length scale of underlying flow 

processes. The basin scale metrics represent spatial patterns of bulk average flows 

entering and exiting the salt marsh system. The elevation of the free surface during spring 

tide is mapped over the entire domain at 20 minute intervals during the two hours before 

and after high tide. Water elevation contour maps are used to compute the free surface 
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slope over a 500m distance between the marsh interior and the Wilmington River (Figure 

4.2). The slope is monitored at each smoothing interval, but with particular focus on two 

hours before and after high tide coinciding with the onset and end of overmarsh flow, 

respectively. 

At the macro scale we investigate changes in the magnitude and direction of 

velocity vectors averaged over a 60m x 60m grid. This grid size was selected through an 

iterative grid averaging process for the representation of flows through the marsh interior. 

Evaluating smoothing effects at this scale is useful in highlighting the topographic 

controls on circulation complexities at intermediate tidal stages and within the marsh 

interior. Rose diagrams of initial and smoothed vectors at 2hrs before and after high tide 

are compared at each smoothing.  

The meso scale approach relies on a water balance approach between flood and 

ebb across six transects (Figure 4.2). Transect 1 encloses the marsh interior but is 

separated into two parts to account for flows between distinct subtidal systems. Hence, 

Transect 1a is between the marsh interior and Groves Creek, and 1b is between the marsh 

interior and the Wilmington River (Figures 4.1 and 4.2). These transects are 500m long 

and each consists of ten 50m long segments (Figure 4.2) to allow for transect flexibility 

with respect to topographic structure. Another set of four 50m long transects (2a, 2b, 2c, 

and 2d) are placed to determine flow characteristics within the marsh interior.  

For all transects the magnitude and direction of net flux for the smoothing 

intervals are computed at ten minute intervals and net fluxes are summed over the full 

spring tide (780min). The convention for describing flux direction across Transects 1 and 

2 is expressed as positive (+) for outflow or ebb, and negative (-) for inflow or flood 
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(Figure 4.2). Thus, flood and ebb volumes that do not sum to zero indicate a net 

difference interpreted as a preferential flow direction over the tidal cycle. Specifically, a 

positive value at Transect 1 indicates net flow away from the marsh interior. Likewise, 

consistent positive (or negative) values for Transect 2 collectively indicate net rotational 

flow.  

Overall, the different scales of analyses provide detailed insight on how 

systematic variations in topography affect overmarsh circulation. Also, a net result of 

smoothing is the gradual removal of the intertidal creek networks for the entire system. 

Therefore, an ancillary product of this work is an assessment of the role of intertidal 

creeks on overmarsh circulation. In other words, an added feature of this effort is an 

evaluation of the role of intertidal creeks in water cycling. 

4.5 RESULTS 

4.5.1 DEM SMOOTHING 

Figure 4.3a shows the structure of the landscape prior to smoothing. The subtidal 

system has a mean elevation of -2.74m, and a total length of 3,210m. The corresponding 

subtidal area is 0.16km
2
, or about 11% of the basin area (Table 4.1). The main channel 

narrows from 128m at the mouth to about 30m at the three branches. Each of the 

branches also becomes narrower in the "upstream" direction, down to less than 1m at the 

terrestrial edge (Figure 4.3a). The West branch is the longest at 1,360m, followed by the 

Middle at 717m, and the East at 485m.  

There are 88 intertidal creeks with a total area of 0.27km
2
 and a mean bed 

elevation of -0.16m ± 0.26m (Figure 4.3a). The creek lengths and widths vary from 10m 

– 500m and 1m – 20m, respectively. Many creeks cut through well-defined levees along 



www.manaraa.com

 

89 

the main stem of Groves Creek and some incise the marsh platform, extending hundreds 

of meters (Figure 4.3a). The smaller and shorter creeks typically occur along the first 

2,300m of Grove's Creek and are relatively straight with nominal branching. Between the 

East and Middle branches creeks tend to form closed loops that produce small intertidal 

islands less than 500m
2
. However, between the West and Middle branches most intertidal 

creeks are sinuous and branching, and have creek heads originating in a single elongate 

depression. The area between the East and West branches is referred to as the "dissected 

marsh" (Figure 4.1 and 4.3a). To the east, along the Wilmington River the largest and 

deepest intertidal creeks occur. In particular, Hannah’s Creek, the site of Station 8 (Figure 

4.1 and 4.3a), is 500m long, becoming narrower and shallower in the upstream direction 

from 14m – 4m, and 
-
1.2m - 0.09m, respectively. 

Above the intertidal creeks is the low marsh; it has a mean elevation of 0.34m ± 

0.07m and an area of 0.18km
2
 (Table 4.1). The most contiguous part of the low marsh is 

an arc-shaped depression that extends between Stations 2 and 7 (Figure 4.3a), paralleling 

Grove's Creek part way. Another large area of low marsh is at the heads of the intertidal 

creek networks in the marsh interior between the West and Middle branches, and smaller 

creek heads throughout. Also, discrete sections of low marsh are commonly associated 

with creek heads (Figure 4.3a). The position and orientation of some low lying areas 

facilitate early and far-reaching inundation and late and prolonged drainage as the tide 

rises and falls, respectively. 

The marsh platform is the most extensive feature with a total area of 0.64km
2
, or 

46% of the domain (Table 4.1) and a mean elevation of 0.60m ± 0.07m (Figure 4.3a). 

The expanse of platform is cut by low marsh troughs that divide the landscape into 
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smaller, isolated subplatform areas particularly to the north and east of the marsh interior 

(Figure 4.3a) and is incised by various intertidal creek systems. In particular, there are 

three locations where the troughs dividing the platform may allow hydraulic short 

circuiting of the flow system in that they can serve as important conduits for transport 

during flood and ebb conditions. These troughs are located east of the marsh interior and 

form a direct link with the larger subtidal system. The first is located approximately 

600m north of the southern terrestrial border (Figure 4.3a) and connects the marsh 

interior to Grove's Creek. Two others are located at the heads of Hannah's Creek and 

connect the marsh interior to the Wilmington River (Figure 4.3a).  

Levees occupy 0.15km
2
 or 10% of the total area (Table 1), and they have a mean 

elevation of 0.85m ± 0.07m (Figure 4.3a). The continuity and shape of levees vary, with 

the longest and most continuous occurring along the northeast-southwest reach of Grove's 

Creek. Most levees along the first 2km of channel vary in height and width and are 

typically cross-cut by intertidal creeks (Figure 4.3a). Smaller, isolated levees tend to form 

along the banks of the subtidal branches, and along the banks of intertidal creeks (Figure 

4.3a). 

In summary, the salt marsh landscape is characterized by highly variable 

microtopography that define subtidal channels, intertidal creek networks, low marsh, 

marsh platform and levees. The smallest and shortest intertidal creeks typically occur 

along the first 2,300m of Grove's Creek, while creek networks in the marsh interior and 

along the eastern marsh edge are larger and longer. In particular, there are three locations 

where intertidal creek networks and low marsh troughs link the marsh interior to (1) 

Grove's Creek and (2 and 3) to the Wilmington River. Below, we report how topographic 
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smoothing affects the system overall and in particular the hydraulic connectivity of the 

marsh with the subtidal areas. 

With the 10 smoothing there is no change in subtidal channel area (Table 4.1) or 

mean elevation and nominal change in the structure of the three branches (Figure 4.3b). 

The mean elevation of intertidal creeks increases to -0.14m ± 0.25m, and the smallest 

creeks along the first 2km of Grove's Creek are now classified as low marsh (Figure 

4.3b), and this results in an 11% increase in low marsh area (Table 4.1). Moreover, the 

connection between the marsh interior and Grove's Creek at about 600m north of the 

southern boundary is lost, and the associated low marsh trough becomes discontinuous 

(Figure 4.3b). However, the two troughs at the head of Hannah’s Creek persist and the 

connection between the marsh interior and the Wilmington River remains intact (Figure 

4.3b). The mean marsh platform elevation decreases to 0.59m ± 0.07m, and its area 

increases by 2% (Table 4.1). The mean levee elevation also decreases to 0.83m ± 0.07m, 

and the smallest levees are now classified as marsh platform (Figure 4.3b), resulting in a 

20% decrease in levee area (Table 4.1).  

With the 17 smoothing the subtidal channel shallows as the mean elevation 

increases to -2.65m ± (Figure 4.3c). The narrower reaches of the three subtidal branches 

become intertidal creeks, resulting in a 4% increase in intertidal creek area (Table 4.1). 

However, the spatial arrangement of intertidal creek elevations reveals that most of the 

intertidal creek structures are removed from the basin (Figure 4.3c). For instance, the 

smaller intertidal creeks along the first 2km of Groves Creek, and most of the creek 

networks in the marsh are replaced by low marsh and marsh platform (Figure 4.3c). The 

area of low marsh is 28% greater and the two troughs at the heads of Hannah's Creek 
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persist (Figure 4.3c). The mean elevation of the marsh platform is slightly lower at 0.58m 

± 0.07m. The mean levee elevation is the same as with the 10 smoothing, but 40% of 

levees are now classified as marsh platform (Figure 4.3c). 

The 50 smoothing increases the mean elevation of the subtidal channel to -2.4m ± 

1.25m, and the three subtidal branches become intertidal creeks (Figure 4.3d), resulting in 

a 6% decrease in subtidal channel area (Table 4.1). The three branches now connect the 

main stem of Groves Creek to a large intertidal depression in the marsh interior (Figure 

4.3d). Together, these changes produce a 26% increase in intertidal creek area, despite 

the removal of most intertidal creek structures (Figure 4.3d). The low marsh increases by 

33% and is mostly associated with the area surrounding the large depression (Figure 

4.3d). However, the low marsh trough between the marsh interior and the Wilmington 

River is now discontinuous, and there are no direct links between the marsh interior and 

the larger subtidal system (Figure 4.3d). The mean elevation of the marsh platform 

decreases to 0.57m ±0.07m, and 5% of the platform area is now classified as low marsh. 

The mean levee elevation is 0.82m ± 0.06m, and 60% have are replaced by marsh 

platform with four large levees remaining along the main stem of Groves Creek (Figure 

4.3d).  

The 100 smoothing results in the mean elevation of the subtidal zone as being -

1.8m ± 0.80m, and 12% of the subtidal area is now intertidal (Figure 4.3e). The main 

channel stem extends to the western terrestrial border where it connects to a trough that is 

linked to a large depression in the marsh interior (Figure 4.3e). Both the trough and the 

depression fall within the range of intertidal creek elevations, resulting in a 48% increase 

in intertidal creek area (Table 4.1). However, intertidal creeks have been completely 
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removed and are now classified as low marsh and marsh platform (Figure 4.3e). The 

marsh platform is lower, with a mean elevation of 0.56m ± 0.06m, and 12% of the area is 

reclassified as low marsh.  

In summary, the 10 and 17 smoothings result in a shallower subtidal environment, 

removal of most intertidal creek networks, and a discontinuous link between the marsh 

interior and Grove's Creek. After 50 and 100 the subtidal channel is shorter and feeds a 

large depression in the marsh interior. Moreover, intertidal creek networks are completely 

removed and there are no low marsh troughs connecting the marsh interior and the larger 

subtidal system. Also, 74% of levee area is removed.  

4.5.2 DRAINAGE DENSITY 

Initially, the total length of intertidal creeks in the 1.4km
2
 basin area was 25.8km, 

giving an average drainage density of 18.5km/km
2 

(Table 4.2). For comparison, Marani et 

al., (2003) evaluated the drainage density of 136 watersheds within 20 salt marshes from 

the northern lagoon of Venice. They found a fairly constant drainage density of about 

20km/km
2
. Meanwhile, Novakowski et al., (2004) found a drainage density of 

13.8km/km
2
 for a salt marsh island located near North Inlet, SC. Hence, the drainage 

density estimated for Groves Creek is comparable to other salt marshes in various 

geographic regions.  

The 10 smoothing reduces the total creek length to 11.1km, giving a drainage 

density of 7.9km/km
2
 (Table 4.2). The 17 smoothing results in a total creek length of 

6.3km, yielding a drainage density of 4.5 km/km
2
; a 75% decrease from the initial value. 

Hence, after 17 most intertidal creek networks are removed. After 50, the total creek 

length is 1.6km and the drainage density is reduced further to 1.1km/km
2
 (Table 4.2). The 
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final smoothing of 100 results in a total creek length of 0.75km and a drainage density of 

0.53 km/km
2
; which is 3% of the original value.  

In summary, 10 and 17 substantially reduce the total length of intertidal creeks 

and they reduce the drainage density by 75%. Hence, the majority of intertidal creeks 

have been removed in the first two smoothings. The 50 and 100 smoothings result in a 

complete removal of intertidal creeks. An ancillary benefit of conducting simulations on 

a sequentially smoothed DEM is that we gradually remove the intertidal creek system and 

consequently the simulation results from those conditions help highlight the role of 

intertidal creeks in overmarsh circulation.  

4.5.3 DEM SMOOTHING AND BASIN SCALE CIRCULATION 

At 9:00 46% of the total area is inundated and the water surface elevation is < 

0.67m (Figure 4.4a). During this time water is confined to the subtidal system, lower 

intertidal creek networks, and low marsh. At 9:40, or two hours before high tide, 91% of 

the marsh is inundated with most levees subaerial (Figure 4.4c). The maximum water 

surface elevation is 0.87m to the east and 0.75m in the marsh interior. At this time the 

marsh floods from the east to the southwest as a type of sheetflow rather than from 

Groves Creek, and persists until high tide. 

 At 12:40 the water surface is 1.25m in the marsh interior and decreases outward 

to 1.19m (Figure 4.5a). At 13:40, or two hours after high tide, the elevation decreases 

from 0.85m in the marsh interior to 0.67m in the subtidal channel and some intertidal 

creeks (Figure 4.5d). At 14:00 24% of the marsh is subaerial with a water surface of 

0.72m across the western low marsh and in the marsh interior (Figure 4.5e), and < 0.67m 
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outward. At this time flow is toward the west and east through intertidal creeks and 

Groves Creek. 

In summary, with inundation the free surface relief is 0.05m – 0.12m, and on ebb 

it is 0.06m – 0.18m. Patterns of free surface slope dynamics indicate that the directions of 

inundation vary directly with inundated area. Flooding occurs from the interior by flow 

through the subtidal to intertidal creeks to the marsh platform, but at 9:40 there is 

southwesterly overmarsh flow. Likewise, the reverse is apparent during ebb. With the 

onset of drainage there is radial flow outward from the southwest and it persists for three 

hours, to Groves Creek and the Wilmington River Later as the marsh topography 

becomes subaerial flows develop toward the marsh edge, giving rise to flow separation 

toward the east and west of the marsh interior.  

Table 4.3 highlights the free surface slope over the eastern marsh edge during 

flood and ebb, at two hours before and after high tide, respectively. Initially, the free 

surface slope on flood is westward at 1.4x10
-4

 (Table 4.3). On ebb the slope is 3.0x10
-4

 

toward the east, 53% greater than flood. Here, we take the greater slope and likely 

stronger flow over the marsh edge during ebb than during flood as an indication of ebb 

dominance (Bayliss-Smith et al., 1979; Myrick and Leopold 1963; Healey et al., 1981). 

Each smoothing gives rise to an increase in the free surface slope during flood, 

indicating more robust flows to the west. Slopes increase from 1.14x10
-4

 initially to 

4.0x10
-4

 for the 100 smoothing (Table 4.3). During ebb the eastward sloping free surface 

responds differently. First, the 10 and 17 smoothings produce a slope that remains 

unchanged relative to the initial. At 50 and 100 the slope increases slightly, but much less 

than was detected during flood. Hence, smoothing has a greater effect on flood than on 
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ebb. In particular, with the 50 and 100 the westward flow during flood is likely stronger 

than during ebb indicating that the higher quality DEM shows ebb dominance while the 

lower quality DEMs show flood dominance. 

Overall, the basin scale analysis shows that the directions of inundation and 

drainage vary with the area of submerged marsh. In particular, at two hours before and 

after high tide, water moves as southwesterly and easterly overmarsh flows. Moreover, 

the high quality DEM produced an eastward free surface slope that is greater than the 

southwesterly slope during flood, and we take this to represent ebb dominance. 

Topographic smoothing results in a progressive increase in free surface slope and to a 

greater extent during flood. In fact, the 50 and 100 smoothings produces a southwesterly 

flood slope that exceeds the eastward ebb slope. Reducing topographic detail resulted in 

the overall system switching from ebb to flood dominance. 

4.5.4 DEM SMOOTHING AND MACRO SCALE CIRCULATION 

The effects of DEM smoothing on macro scale circulation were evaluated by 

monitoring changes in average velocity vectors in a 60m x 60m window and comparison 

with the initial unsmoothed results. For brevity, rose plots of velocity magnitude and 

direction at 2hrs before and after high tide are compared for each smoothing (Figure 4.6). 

In general, the results at 9:40 for the original DEM show westerly flows that exceed 

0.20m/s, and < 0.05m/s flows in all directions (Figure 4.6a). Also, high velocities occur 

toward the northwest and southwest. Intermediate to these are southwesterly flows that 

reach up to 0.15m/s.  

In all cases flood conditions for the smoothed DEMs have most of the higher 

velocities and in more directions (Figure 4.6). Also, the occurrence of the higher velocity 
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increases with successive smoothings but westerly flows remain most common. The 10 

had negligible effect on current direction, with 30% to the west and 15% southward 

(Figure 4.6b). Also, the maximum and mean velocity increases slightly to 0.35m/s and 

0.06m/s, respectively. The 17 produced similar results but gave rise to northwesterly flow 

(Figure 4.6c). With 50 the flows toward the northwest are reduced while flow speeds to 

the west, southwest and east increase (Figure 4.6d). In to 100, the majority of flood 

vectors are toward the west, southwest and south (Figure 6e). Flow is also stronger in all 

directions and the maximum velocity increases to 0.57m/s (Figure 4.6e).   

For the ebb conditions the initial and smoothed DEM results consistently 

demonstrate that flows were predominantly toward the northwest quadrant, with a wide 

range of current velocities in all directions (Figure 4.6a – 4.6j). However, in most 

instances the current velocities of the lower quality DEMs are mostly comparable to the 

initial values (Figure 4.6a – 4.6j). Also, the increase in occurrence of higher velocities 

with successive smoothings is less pronounced; opposite of flow conditions.  

In summary, with 10 and 17 there is a nominal effect on flood and ebb velocities, 

while 50 and 100 produced stronger corresponding flow toward the southwest and 

northeast. This effect is more pronounced during flood than during ebb. For example, the 

peak flood velocity after 100 is 0.54m/s or 32% stronger than the peak ebb velocity of 

0.36m/s.  

4.5.5 DEM SMOOTHING AND MESO SCALE CIRCULATION 

The effect of smoothing on meso scale fluxes was evaluated by monitoring 

changes in net water volume transport over one spring tidal cycle across a set of transects. 

We focus on the spring tide response because of the fuller inundation of the landscape. 
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The results are reported in Table 4 as percentages of the initial simulations, with positive 

and negative values indicating net outward and inward flow, respectively (Table 4.4 and 

Figure 4.2).  

The net transport over Transect 1a increases by 4% after 10 and 6% after the 17 

(Table 4.4). However, for 50 and 100 net flow decreased by 28% and by 35%, 

respectively. The response was similar for Transect 1b, with an initial increase of 5% 

after 10 and a decrease of 3% after 17 (Table 4.4) followed by a 16% after 50 and 66% 

after 100. Despite these slight to moderate differences, in all cases the net direction of 

flow was positive and away from the marsh interior (Table 4.4 and Figure 4.2)  

The initial net transport at Transects 2a – d is positive (Table 4.4). In this case, the 

positive values collectively indicate counter-clockwise rotational flow (see Sullivan et al., 

2015 and Figure 4.2). With each smoothing the response is highly variable with some 

overall increasing or decreasing fluxes. In particular, for 10 and 17 the changes are all 

positive and this indicates that, as with the unsmoothed data, flows are characteristically 

rotational in the counter clockwise direction. However, for 50 and 100 the net fluxes are 

negative and this indicates clockwise rotational flow.  

Typically, topographic smoothing results in a slight increase in net water flux 

across Transect 1 with 10 and 17, and a decrease in flux with 50 and 100 (Table 4.4). 

However, the net flow direction is consistently outward for all smoothings. The Transect 

2 response is more variable. Net flux declines after the first two intervals, but is 5 – 7 

times greater with 50 and 100. These differences indicate counter clockwise rotational 

flow for 10 and 17, and clockwise rotation with 50 and 100.   
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4.5.6 DEM SMOOTHING AND DYE CIRCULATION OVER THE BASIN 

Figure 4.7 shows the dye distribution resulting from the initial DEM. At two 

hours before high tide the dye remains in the inner marsh with the front forming a half 

"oval" shape of higher concentrations open to the northwest, centered on Groves Creek 

(Figure 4.7a). Also, very little dye remains in the main subtidal channel, and most is on 

the dissected marsh. However, this general view is interrupted by two features; one is a 

high concentration area in the dissected marsh, and another is a low concentration front 

along the marsh platform north of and parallel to Groves Creek. Also, pockets of high 

and low concentration are distributed throughout (Figure 4.7a).  

At two hours after high tide the dye is much more dilute; less than half the flood 

values (Figure 4.7b). Most of the higher concentrations are within ~300m of the southern 

terrestrial border, and much lower concentrations occur to the north. The resulting dye 

distribution nearly encircles the inner part of Groves Creek, and the outward non-uniform 

dye front develops several "points" that indicate focused flow away from the interior 

(Figure 4.7b). In this case the dye entered the marsh via Grove's Creek but exited through 

Hannah's Creek. Hence, a short-circuiting of the flow system occurred.  

Difference maps between the smoothed and unsmoothed dye concentrations at 

two hours before high tide are shown in Figure 4.8. The difference values range from -

800ppb to +1500ppb, but 99% are within 200ppb of the initial concentrations. Overall, 

the extent of dye in the initial simulations and that inferred from the difference maps are 

comparable. Moreover, with each smoothing there are comparable areal extents of 

surplus and deficit values, but their spatial arrangements are highly variable. Hence, the 

system has patches of high and low difference throughout.  
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The series of difference maps show that the extent of surplus values becomes 

progressively confined closer to the subtidal system, and the patchiness substantially 

decreases (Figure 4.8). This means that each smoothing gives rise to the presence of more 

concentrated dye in the subtidal system, and the dye distribution becomes more uniform.  

The maximum extent of dye is also noteworthy. For example, the initial results 

show dye reaching the heads of many adjoining creek systems that are oriented away 

from the marsh interior. In particular, for the initial, 10 and 17 smoothings highly 

concentrated dye reaches the "headwater" areas of Hannah's Creek and adjoining 

systems, whereas the subsequent smoothings lead to lower concentrations reaching the 

same area (Figure 4.8). Hence, the smoothings of 50 and 100 essentially shut down the 

delivery of highly concentrated dye to the intertidal creeks that during ebb can be 

expected to "short-circuit" the flow system and return marsh water directly to the 

Wilmington River, thus bypassing Groves Creek.  

Moreover, during ebb, the range and magnitude of differences are much lower 

than during flood (Figure 4.9). As with flood conditions, the areal extents of dye in the 

initial simulation and that inferred from the difference maps are comparable. Patches of 

high and low differences are distributed throughout, but with dissimilar spatial 

arrangement. In particular, we focus on the differences determined at the upper reaches of 

the Hannah's Creek network.  

In all cases of topographic smoothing Hannah's Creek serves as a conduit for flow 

between the marsh interior and the Wilmington River. However, the supply of 

concentrated water reaching and flowing through the creek system is highly variable. For 

the 10 and 17 smoothings water in the south fork and that flowing out of the system is 
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progressively more concentrated (Figure 4.9). On the other hand, with the 50 and 100 

smoothings the concentrations at the same locations are substantially reduced. Also, for 

the 100 there is a high concentration patch to the west of the creek system, along the 

terrestrial border and another noteworthy patch northward, where concentrated water 

reaches the headwaters of creeks that empty directly into Groves Creek.  

In summary, on the flood 10 and 17 resulted in more expansive areas of higher 

dye concentrations in the marsh interior, along the southern terrestrial border, and near 

the head of Hannah's Creek. Meanwhile, more dilute dye occurs in the subtidal channel 

and intertidal networks. With 50 and 100 there is much more dye confined to the subtidal 

system and lower dye delivery to the surrounding marsh interior. Therefore, the 10 and 

17 smoothings produced slightly enhanced dye dispersal relative to 50 and 100. During 

ebb, the differences are smaller during flood, but their magnitudes increase with 

smoothing. At 10 and 17 more concentrated dye exits the basin through Hannah's Creek. 

At 50 and 100 the dye is confined to the marsh interior, less dye passes through Hannah's 

Creek, and thus Groves Creek assumes a larger role with respect to dye removal from the 

marsh. Together, these results reveal that the effects of diminished DEM quality on dye 

circulation are: 1) limited dye dispersal to the marsh interior during flood, 2) enhanced 

dye retention during ebb, and 3) differences between flood and ebb flowpaths. 

4.5.7 TRACER RESIDENCE TIME 

Simulations of residence times (Rt) at various locations range from 1.02 day – 

1.20 day (Table 4.5). At Stations 1 and 2 the Rt values of 1.18 day and 1.20 day, 

respectively, are longer than other stations because these sites are "upstream" of the 

release point (Table 4.5). However, these high values are artifacts of the experimental 
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design, e.g. introduction of dye on rising tide causes dye to move away from these 

stations, toward others. Consequently, excluding these stations gives a maximum of 1.14 

day. Station 7 is located in the low marsh and has the lowest Rt of 1.02 day. All other 

stations that, by their location, represent the average marsh interior conditions have a Rt 

of 1.07 day - 1.14 day.  

Overall, the smoothings give a consistent Rt response. In going from the initial to 

the 10 and then to the 17 the values systematically decline at all stations (Table 4.5). But 

from 17 to 50 to 100 Rt increases. Therefore, the first two smoothings appear to promote 

dye transfer. On the other hand, for 50 and 100 the dye dispersal is inhibited and retained 

in the system over a longer time. In addition, the range of Rt values between the eight 

stations increases with smoothing (Table 4.5), indicating that variations in Rt are in part 

related to the topographic expression of the marsh surface.  

In summary, the tracer residence time at all stations decreases with 10 and 17, but 

increases for 50 and 100. Hence, the first two smoothings indicate more efficient flushing 

while the 50 and 100 results indicate greater dye retention. Moreover, the range of Rt 

values increases with each smoothing, and this reveals that Rt values can differ 

considerably as a function of topographic structure. Together, these results show that 

diminished DEM quality can give rise to substantially different residence times of natural 

or introduced constituents.  

4.6. DISCUSSION 

The Groves Creek salt marsh is characteristic of a complex intertidal landscape. 

In particular, the high resolution DEM shows small intertidal creeks that cross cut levees, 

and complex creek networks throughout the marsh interior, and in many cases creek 
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systems are connected at their heads by low marsh. Moreover, the detailed DEM reveals 

three locations where creek networks and low marsh troughs facilitate a direct exchange 

of water between the marsh interior and Groves Creek and with the Wilmington River. 

This hydraulic connectivity is important because it gives rise to the potential for "short-

circuiting" of the flow system. In other words, Wilmington River water that enters the 

marsh system through Groves Creek during flood may return to the Wilmington River 

through these hydraulic connections, and consequently bypass Groves Creek on ebb.  

The gradual approach to topographic smoothing progressively reduces the 

drainage density by approximately 50% with each iteration, and it decreases the number 

and extent of intertidal creeks. In particular, after the 10 and 17 smoothings the drainage 

density is significantly reduced and the surface is nearly devoid of intertidal creeks. 

Moreover, at 50 and 100 the hydraulic connections that are higher in the tidal framework 

and between the marsh interior and the Wilmington River are broken; hence, connectivity 

is lost. Together, these structural changes in the marsh landscape allow us to infer from 

our results the role of intertidal creeks and hydraulic connectivity in simulating 

overmarsh circulation. Overall, the 10 and 17 smoothings did not noticeably impact 

overmarsh circulation despite the removal of most intertidal creeks. Further, simulations 

signifigantly diverge from the initial high quality DEM results once the connectivity is 

lost with the 50 and 100 smoothing. Hence, the hydraulic connectivity of the basin 

greatly influences overmarsh circulation much more than the intertidal creek networks.  

The loss of connectivity from the 50 and 100 smoothings also produced a system 

wide switch from ebb to flood dominance. For instance, at the basin scale the initial DEM 

has a free surface slope over the eastern marsh edge that is greater during ebb than flood, 
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and we take this to represent ebb dominant conditions. At 10 and 17, the ebb dominant 

conditions persist, while 50 and 100 produces a westward flood slope that exceeds the 

slope during ebb, indicating flood dominance (Table 4.3). At the macro scale peak ebb 

currents at 2hours after high tide are initially greater than peak flood currents, and this is 

also true after 10 and 17. However, peak flood velocity exceeds peak ebb flow by 32% 

with the greater smoothing. Moreover, the meso scale assessment counterclockwise 

rotational flow for initial, 10 and 17 simulations, while the 50 and 100 smoothings give 

rise to clockwise rotational flow. Taken together these findings suggest that the flood-ebb 

dominance of a basin is in part related to geomorphic structure and in particular the 

hydraulic connectivity of the landscape, or opportunities for short circuiting. This is 

important because spurious simulation results arising from variable DEM quality will 

likely impact studies of system morphodynamics. For example, sediment flux is 

intrinsically related to tidal asymmetry through flood or ebb transport, and the 

development of flood or ebb dominant bedforms (Aubrey, 1986; Van de Kreeke and 

Robaczewska, 1993; Freidrichs et al., 1998). Also, flood dominant flows tend to have 

higher suspended sediment concentration near the creek/marsh boundary, and thereby 

increase the sediment supply to the marsh; and marsh accretion (Stevenson et al., 1988; 

Leonard et al., 1995b). Hence, flood dominance at this salt marsh would likely result in 

higher levels of marsh accretion and increased organic matter preservation (Stevenson et 

al., 1988).  

Much more information on the smoothing effects on overmarsh circulation can be 

gleaned by assessing dye dispersal. Maps of concentration difference at 2hrs before high 

tide indicate that interval 10 and 17 slightly enhanced the dye dispersal to the marsh 
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interior during flood, and higher concentrations exiting the system via Hannah's Creek 

during ebb. However, at 50 and 100 there is much less dispersal during flood, and higher 

concentrations exiting through Groves Creek rather than Hannah's Creek. Together, these 

observations suggest that dye distribution, and ultimately the fate of suspended particlate 

matter is largely influenced by larger scale hydraulic connectivity higher up in the tidal 

framework, and to a lesser extent the small intertidal creek networks. This finding 

contradicts Blanton et al., (2010) who speculated that salt marsh circulation is highly 

sensitive to the effect of smaller “capillary” creeks or intertidal creeks less than about 1m 

in width and depth. They attributed their limited tracer dispersal during flood and dye 

retention in the marsh interior during ebb to the exclusion of small scale intertidal creeks 

from their DEM.  

Another main finding of this work is that the residence time of water, and hence 

nutrients, larvae, and other suspended material vary as a function of the basin geomorphic 

structure. Initially, the Rt of the Groves Creek basin is about 1 day. After 10 and 17, there 

is a systematic decrease in Rt throughout the basin, while at 50 and 100 the Rt increases 

at all sites and is highly variable. From a geomorphic perspective, these results indicate 

that the flushing processes of a salt marsh with fewer intertidal creeks and lower drainage 

density are faster, whereas the flushing efficiency of a basin closed off and disconnected 

from the larger subtidal system is much lower. Therefore, we propose that the range of Rt 

values for any given salt marsh basin is set by the geomorphic structure of the landscape.  

Ultimately, we have shown that the small intertidal creek networks are not 

necessarily the most important feature for accurate simulation of overmarsh flow. Rather, 

it is the hydraulic connectivity that facilitates direct links between the marsh interior and 
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the larger subtidal system. Hence, we propose that the DEM quality be sufficient of 

capturing the hydraulic connectivity across the marsh, but not necessarily the smallest 

creeks. At this study site a DEM resolution of 17m is sufficient for accurate 

representation of flows. 

4.7 CONCLUSIONS 

Here we ask the question: How much DEM detail is need to accurately represent 

overmarsh circulation in a Georgia, USA salt marsh?  Smoothing a highly accurate DEM 

with a window of 17m x 17m effectively removes small scale intertidal creek systems 

and the corresponding overmarsh flow simulations are not affected. However, smoothing 

with a 50m x 50m window reveals a threshold in hydrodynamic response that is 

coincident with the removal of short-circuiting pathways between the marsh interior and 

the larger subtidal system. Hence, for accurate simulations of overmarsh circulation the 

DEM must account for the hydraulic connectivity of the basin, but not necessarily the 

smaller intertidal creeks and creek networks.
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Table 4.1: 2D assessment of geomorphic areas and drainage density (Dd) before and after 

smoothing. The percent change from the initial value is shown in parenthesis. 

 Subtidal (km
2
) Intertidal 

(km
2
) 

Low Marsh 

(km
2
) 

Marsh 

Platform 

(km
2
) 

Levee 

(km
2
) 

Initial 0.16  0.27 0.18 0.64 0.15 

10 0.16  0.27 0.20 (11%) 0.65 (2%) 0.12 (20%) 

17 0.15 (6%) 0.28 (4%) 0.23 (28%) 0.65 (2%) 0.09 (40%) 

50 0.15 (6%) 0.34 (26%) 0.24 (33%) 0.61 (5%) 0.06 (60%) 

100 0.14 (12%) 0.40 (48%) 0.26 (44%) 0.56 (12%) 0.04 (73%) 
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Table 4.2 Creek length and drainage density (Dd) before and after smoothing. The 

percent change from the initial value is shown in parenthesis. 

 Intertidal Creek 

Length (km) 

Dd (km/km
2
) 

Intertidal 25.8 18.4 

10 11.1 7.9 (57%) 

17 6.3 4.5 (75%) 

50 1.6 1.1 (94%) 

100 0.75 0.53 (97%) 
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Table 4.3 Table 3: Free surface slope over the eastern marsh edge at 940 GMT and 1340 

GMT, or two hours before and after high tide.  

 

 

 

 

 

 

 940 1340 

Initial 1.4x10
-4

 3.0x10
-4

 

10 1.8x10
-4

 3.0x10
-4

 

17 2.2x10
-4

 3.0x10
-4

 

50 3.4x10
-4

 3.2x10
-4

 

100 4.0x10
-4

 3.8x10
-4
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Table 4.4: Net flux over Transects 1a and 1b, and 2a, 2b, 2c, and 2d before and after 

topographic smoothing. Positive values over 1a and 1b reflect net flow toward the basin 

exterior, and net counterclockwise rotation over the marsh interior. Negative values 

reflect the opposite. 

  1a 1b 2a 2b 2c 2d 

Initial +1 +1 +1 +1 +1 +1 

10 +1.04 +1.05 +0.55 +1.30 +1.10 +0.85 

17 +1.06 +1.05 +0.12 +1.10 +0.66 +0.26 

50 +0.72 +0.84 -5.61 -1.23 -0.37 -0.02 

100 +0.65 +0.34 -6.98 -0.58 -0.96 -0.21 
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Table 4.5: Tracer residence time (Rt) for Stations 1, 2, 3, 3g, 5g, 6, 7 and 8 before and 

after topographic smoothing. 

 St. 1 St. 2 St. 3 St. 3g St. 5g St. 6 St. 7 St. 8 

Initial 1.18 1.2 1.07 1.14 1.14 1.08 1.02 1.12 

10 1.05 0.98 0.85 1.13 1.13 1.01 0.83 0.91 

17 0.99 0.92 0.80 1.11 1.06 0.94 0.83 0.86 

50 1.23 1.04 1.10 1.39 1.31 1.43 1.15 1.09 

100 1.21 1.79 2.12 3.44 3.23 2.77 1.32 1.32 
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Figure 4.1 Groves Creek is a semi-enclosed creek-marsh system located approximately 

20 km south of Savannah GA, USA. The shading of the imagery reflects variations in 

vegetation density. Specifically, lighter shades in the dissected marsh and along creek 

heads are associated with unvegetated mud. Darker shades along levees and creek banks 

reflect areas of dense vegetation. Medium shades are associated with the vegetated marsh 

platform. The lighter shading of the marsh platform in the northeast is associated with an 

area of sparsely vegetated high marsh. Groves Creek has three subtidal branches labeled 

E, W and M for East, West and Middle, respectively. The largest intertidal creek is 

located along the eastern marsh edge and is referred to as “Hannah’s Creek”. The white 

dashed line outlines the “marsh interior”. Within the marsh interior is the “dissected 

marsh” which is bounded by the West and East subtidal branches.
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Figure 4.2 The initial high resolution GPS DEM is shown. White to black on the color 

bar represents the elevation range associated with levee, marsh platform, low marsh, 

intertidal creeks, and subtidal channel, respectively. White circles mark the locations of 

pressure sensors, ADCPs, fluorometers, and grab samples. The small gray line south of 

Station 2 marks the location of the dye release. The white diamonds mark the locations 

where the free surface slope is monitored for the basin scale assessment. The white lines 

throughout the marsh interior represent the six transects used to estimate meso scale flux. 

Transects lengths are 500m for 1a and 1b and 50m for 2a, 2b, 2c, and 2d. The + and - 

illustrate the flow convention for the meso scale analysis. For transects 1a and 1b, 

positive flows represent net transport away from the marsh interior. For transects 2a-2d, 

positive flows represent net counterclockwise flow within the marsh interior. Finally, the 

black box labeled “1” marks the location of the dogleg creek selected for the micro scale 

assessment.
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Figure 4.3 The series of maps showing (a) the initial DEM, (b) the 10x10, (c) 17x17, (d), 

50x50, and (e) 100x100. The series of maps illustrates the 2D alteration of the landscape. 

From high to low elevation, the contour intervals reflect the elevation range of the levees 

(white), marsh platform (light gray), low marsh (light gray), intertidal creeks (medium 

gray) and subtidal channel (black).
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Figure 4.4 A series of maps showing the free surface elevation at 0.33hr intervals during the spring flood tide. This is the free surface 

prior to DEM smoothing. Warm and cool colors represent high and low water surface elevation, respectively.
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Figure 4.5 A series of maps showing the free surface elevation at 0.33hr intervals during the spring ebb tide. This is the free surface 

prior to DEM smoothing. Warm and cool colors represent high and low water surface elevation, respectively
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Figure 4.6 Rose diagrams of macro scale velocity before and after smoothing, and at 9:40 and 10:40 GMT. The dashed circles 

represent the percentage of vector differences for a given direction. The color ramps associated with each bar represent the magnitude 

of velocity where warm and cool colors represent large and small values, respectively
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Figure 4.7 Maps of dye transport at (a) 1900 GMT and (b) 2200 GMT, or two hours after 

high tide on November 1
st
, 2010. The red line marks the location of the dye release. The 

subplot shows the tidal stage at each timestep. Warm and cool colors show areas of high 

and low concentration, respectively.
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Figure 4.8 Maps of concentration differences at 1900 GMT for (a) 10 - initial, (b) 17 - initial, (c) 50 - initial, and (d) 100 - initial. Red 

shades represent areas where smoothing resulted in higher concentrations, and blue shades represent areas where smoothing produced 

lower concentrations.
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Figure 4.9 Maps of concentration differences at 2200 GMT for (a) 10 - initial, (b) 17 - initial, (c) 50 - initial, and (d) 100 - initial. Red 

shades represent areas where smoothing resulted in higher concentrations, and blue shades represent areas where smoothing produced 

lower concentrations.
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CHAPTER 5 

SUMMARY 

This dissertation highlights the complexity in overmarsh circulation across 

various spatial and temporal scales that arise from the submergence/emergence of subtle 

salt marsh topography. It also provides a deeper insight into the geomorphic controls on 

flow processes in intertidal landscapes. In the first part of this work GPS and lidar salt 

marsh DEMs were compared to evaluate how well the remote sensing technology 

captures the salt marsh topography. Results show that 78% of the lidar elevations were 

within the accepted range of accuracy and, therefore, lidar appears to be a robust tool for 

measuring salt marsh topography. However, the spatial arrangement of elevation 

differences reveals that the lidar DEM poorly represents the subtle geomorphic structure 

of the marsh landscape. Therefore, for studies of flow processes in salt marshes lidar 

surveys should be supplemented with additional elevation data.   

In the second part of this work, a high precision, high resolution GPS DEM is 

used for hydrodynamic simulations of overmarsh flow and dye circulation using Delft3D. 

The simulation results are robust and in most cases produced a model efficiency greater 

than 0.90. This is primarily due to the high quality salt marsh DEM and the range and 

quality of field data for calibration and validation. Dye transport and circulation reveal 

strong complexity with the temporal evolution of inundation, and drainage at water levels 

within 0.2m of the mean platform elevation. Moreover, over the full five-day simulation 

interval we found that 53% of the dye mass exited the system at the eastern marsh edge
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while 32% exited via the mouth of Groves Creek. At the basin scale (1,000m) the marsh 

platform is initially inundated from the marsh interior but as the tide continues to rise 

flooding occurs from the basin edges, and the onset of overmarsh flow. At the macro 

scale (100m) flow paths are highly variable with concomitant convergence and 

divergence, and strong flow over the marsh edge. At the meso scale (10m) I detected 

rotational flow over the marsh interior, and across channel heads. At the micro scale (1m) 

I show that flood and ebb flow are controlled by the channel banks but at higher tide 

stages the larger scale barotropic pressure gradient causes the currents to flow across tidal 

creek networks. Together, these results reveal that overmarsh flow complexities arise 

from the temporal variations in submergent/emergent topography. 

Finally, I progressively smooth the high resolution DEM to investigate the effect 

of DEM quality on achieving accurate simulations of overmarsh circulation. Topographic 

smoothing with a window size of 17m x 17m effectively removes small scale intertidal 

creek systems and the corresponding overmarsh flow simulations are not affected. 

However, smoothing with a 50m x 50m window reveals a threshold response that is 

coincident with the removal of short-circuiting pathways between the marsh interior and 

the larger subtidal system. These findings reveal that small intertidal creeks have a minor 

role in overmarsh circulation, while the presence of short-circuiting flowpaths dictates 

circulation for 53% of the water entering the basin. Hence, for accurate simulations of 

overmarsh flow the DEM must account for the hydraulic connectivity of the basin to the 

surrounding subtidal system, but not necessarily the smaller intertidal creeks and creek 

networks. For the Groves Creek salt marsh, a topographic resolution of 17m or less is 

sufficient.
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